
ftドゥイーノ

fschertechnik互換のArduino

取扱説明書

Dr.-Ing。ハーバウムまで

2021年1⽉12⽇

eifer
取り消し線

タンジャ、マヤ、ファビアン、アイダの場合

© 2017、2018、2019Dr.-Ing。ハーバウムまで< till@harbaum.org >

プロジェクトホームページ： http://ftduino.de コン
タクト： mailto：// info@ftduino.de フォーラム：
https://forum.ftcommunity.de/ WEEE登録番号：
DE 25270264

mailto:till@harbaum.org
http://ftduino.de
mailto://info@ftduino.de
https://forum.ftcommunity.de/

⽬次

1 印⼼
1.1 ftドゥイーノ-概念

1.1.1Schertechnikモジュラーシステム。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
1.1.2Arduinoシステム。。。

1.2 ftドゥイーノコントローラ
1.2.1マイクロコントローラー
1.2.2USBポート
1.2.3リセットボタン。。。
1.2.4内部LED。。
1.2.5電源。。
1.2.6接続。。
1.2.7内部OLEDディスプレイを備えたバリアント。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
1.2.8Arduinoの経験豊富なユーザー向けの注意事項。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

1.3問題の解決策。。
1.3.1の緑⾊のLED ftドゥイーノ 点灯しません。。。。。。。。。。。。。。。。。。。。。。。。。。。
1.3.2 ftドゥイーノ としてPCに表⽰されません COM：-ポートオン。。。。。。。。。。。。。。。。。。。。。。。。。。
1.3.3 ftドゥイーノ 動作しますが、出⼒は動作しません。。。。。。。。。。。。。。。。。。。。。。。。。。。
1.3.4 ftドゥイーノ 恥じることはできません。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
1.3.5 ftドゥイーノ レオナルドとして認識されています。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

7⽇
7⽇
7⽇
8⽇
9

10
11⽇
11⽇
11⽇
11⽇
14⽇
17⽇
18⽇
18⽇
18⽇
18⽇
18⽇
19⽇
20⽇

。。

。。。
。。。
。。。

2 インストール
2.1ドライバー。。

2.1.1 Windows10。。。
2.1.2 Windows8.0およびWindows8.1。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
2.1.3 Windows7およびWindowsVista。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
2.1.4Linux。。。

2.2ArduinoIDE。。。
2.2.1UbuntuソフトウェアストアのLinux⽤ArduinoIDE。。。。。。。。。。。。。。。。。。。。。。。。
2.2.2ボード管理者によるインストール。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
2.2.3アップデート。。。

22⽇
22⽇
22⽇
22⽇
23
24
26⽇
26⽇
26⽇
28

3 最初のステップ
3.1最初のスケッチ。。。

3.1.1まばたきスケッチをにダウンロードします ftドゥイーノ 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
3.1.2スケッチのしくみ。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
3.1.3機能 設定（） と ループ（）。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
3.1.4スケッチの調整。。

3.2schertechnikコンポーネントの制御。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
3.2.1スケッチ。。
3.2.2⼊⼒。。。

3.3PCとの通信。。
3.3.1シリアルモニター。。。
3.3.2スケッチの説明。。。
3.3.3USB接続の確⽴。。

30⽇
30⽇
31
32
32
32
33
33
34
35
36
37
37

4位 ⽬次

4位プログラミング
4.1テキストベースのプログラミング。。
4.2プログラミング⾔語C++ 。。
4.3基本。。

4.3.1コメント。。。
4.3.2エラーメッセージ。。
4.3.3機能。。
4.3.4機能 設定（） と ループ（）。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
4.3.5例。。。

4.4役⽴つライブラリ関数。。。
4.4.1 pinMode（ピン、モード）。。。
4.4.2 digitalWrite（ピン、値）。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
4.4.3 遅延（ミリ秒）。。。
4.4.4 Serial.begin（速度）。。。
4.4.5 Serial.print（val） と Serial.println（val）。。。。。。。。。。。。。。。。。。。。。。。。。。
4.4.6 ftduino.input_get（）、ftduino.output_set（） と ftduino.motor_set（）。。。。。。。。。。。

4.5変数。。。
4.5.1データ型 int。。

4.6条件。。。
4.6.1 もしも-命令 。。

4.7研削。。。
4.7.1 その間-リボン。。
4.7.2 にとって-リボン。。。

4.8例。。。
4.8.1単純な信号機。。。
4.8.2バリア。。。

4.9警告 少しの記憶。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
4.9.1影響。。
4.9.2予防措置。。

4.10詳細情報。。

39
39
41
41
42
43
44
45
46
46
47
47
47
48
48
48
50
50
51
51
52
52
53
54
54
55
56
56
57
59

5 ftドゥイーノ 学校で
5.1スクラッチを使⽤したグラフィックプログラミング。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

5.1.1スクラッチバージョン。。
5.1.2 Arduino（S4A）のスクラッチ1.4。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
5.1.3スクラッチ3.0。。。

5.2 Blockly / Bricklyを使⽤したグラフィックプログラミング。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
5.2.1ブリックリー。。
5.2.2Brickly-Lite。。。

5.3Minecraftでの遊び⼼のあるプログラミング。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
5.4 ArduinoIDEを使⽤したテキストベースのプログラミング。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

5.4.1Arduinoのアイデア。。
5.4.2Arduinoと ftドゥイーノ 。。
5.4.3 ftドゥイーノ エントリーレベルのArduinoとして。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

60
60
61
61
62
64
65
66
67
68
68
69
69

6⽇実験
6.1ランプタイマー。。

6.1.1スケッチ ランプタイマー。。。
6.2緊急停⽌。。。

6.2.1スケッチ 緊急停⽌。。。
6.3パルス幅変調。。

6.3.1スケッチ Pwm。。。
6.4ステッピングモーター制御。。

6.4.1フルステップ制御。。。
6.4.2ハーフステップ制御。。

6.5サーボモーター制御。。。
6.5.1外部6ボルト電源。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

6.6の⼊⼒ ftドゥイーノ 。。

70
70
70
72
72
75
75
79
81
82
84
85
87

https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/LampTimer
https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/EmergencyStop
https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/Pwm

⽬次 5

6.6.1電圧測定。。。
6.6.2抵抗測定。。
6.6.3出⼒としての⼊⼒。。

6.7温度測定。。。
6.7.1スケッチ 温度。。

6.8出⼒はオン、オフ、またはどれも出⼒しませんか？。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
6.8.1スケッチ OnOffTristate。。。
6.8.2漏れ電流。。。

6.9アクティブエンジンブレーキ。。。
6.10USBキーボード。。

6.10.1スケッチ USB / KeyboardMessage。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
6.11USBゲームパッド。。

6.11.1スケッチ USB /ゲームパッド。。
6.12デバウンス。。

6.12.1スケッチ デバウンス。。
6.13Iの使⽤2Cバス。。

6.13.1スケッチ I2C / I2cScanner。。
6.13.2MPU-6050センサー。。
6.13.3OLEDディスプレイ。。
6.13.4 VL53L0XLIDAR距離センサー。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
6.13.5 ftドゥイーノ 私のように。2Cクライアントと2つのカップリング ftドゥイーノs。。。。。。。。。。。。。。。。。。。。。。。。。
6.13.6 ftドゥイーノ-私2Cエキスパンダー。。
6.13.7schertechnik⽅向センサー。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
6.13.8schertechnik環境センサー。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
6.13.9 Mini-I2Cサーボアダプタ。。。

6.14WS2812Bフルカラー発光ダイオード。。
6.14.1スケッチ WS2812FX。。

6.15からの⾳楽 ftドゥイーノ 。。。
6.15.1スケッチ ⾳楽。。
6.15.2スケッチ MusicPwm。。

6.16 ftドゥイーノ MIDI楽器として。。
6.16.1スケッチ MIDI楽器。。

6.17 ftドゥイーノ Androidスマートフォンで。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
6.18 WebUSB： ftドゥイーノ Webブラウザを介した制御。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

6.18.1Chromeブラウザ。。。
6.18.2WebUSBスケッチ。。
6.18.3コンソール。。。
6.18.4ブリックライト。。
6.18.5スクラッチ3.0。。。

6.19Bluetooth。。
6.19.1Bluetoothバリアント。。。
6.19.2への接続 ftドゥイーノ 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
6.19.3PCまたはスマートフォンでの使⽤。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

87
87
88
88
89
91
91
92
92
94
94
95
96
97
97

100
101
101
102
103
104
109
109
110
112
114
115
115
116
116
117
117
118
119
119
119
120
121
121
122
122
124
129

7⽇モデル
7.1⾃動化ロボット：ハイベイ倉庫
7.2電空：ピンボール。。
7.3 ROBOTICS TXT Explorer：ラインフォロワー。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
7.4アイダの信号機。。

7.4.1ステートマシン。。。
7.5クラシック2Dプロッタ。。

132
132
133
134
135
136
138

。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

8⽇コミュニティプロジェクト
8.1 ftduino_direct： ftドゥイーノ-USB経由でTXTおよびTX-Piに接続
8.2 ftDuinIO： ftドゥイーノ-TXTおよびTX-Piの制御アプリ。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
8.3 レンガのプラグイン： グラッシュ ftドゥイーノ-Bricklyでのプログラミング。。。。。。。。。。。。。。。。。。。。。。。
8.4 startIDE： TX-PiまたはTXTで直接プログラミングします。。。。。。。。。。。。。。。。。。。。。。。。。
8.5フィートエクステンダー：I。2C拡張⼦。。

140
140
141
142
143
144

。。。。。。。。。。。。。。。。。。。。。

https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/Ftduino/examples/Temperature
https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/OnOffTristate
https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/USB/KeyboardMessage
https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/USB/GamePad
https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/Debounce
https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/I2C/I2cScanner
https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/Music
https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/MusicPwm
https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/MidiInstrument

6⽇ ⽬次

8.6 Arduino（S4A）のスクラッチ。。。
8.6.1インストール。。
8.6.2S4Aでのピン割り当ての表現。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

8.7 マインクラフト と ftドゥイーノ：コンピュータゲームは現実の世界と出会う。。。。。。。。。。。。。。。。。。。。。。。。。。。
8.7.1のインストール ftドゥイーノ-モッド。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
8.7.2の準備 ftドゥイーノ 。。
8.7.3の使⽤ ftドゥイーノ Minecraftで。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

144
145
146
146
147
147
148

9つのライブラリ
9.0.1ポートの定義と定数

9.1 FtduinoSimple。。。
9.1.1スケッチで使⽤します。。。
9.1.2 bool input_get（uint8_t ch）。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
9.1.3 bool counter_get_state（uint8_t ch）。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
9.1.4 void output_set（uint8_tポート、uint8_tモード）。。。。。。。。。。。。。。。。。。。。。。。。
9.1.5 void motor_set（uint8_tポート、uint8_tモード）。。。。。。。。。。。。。。。。。。。。。。。。。
9.1.6スケッチの例。。

9.2 Ftduino。。。
9.2.1⼊⼒ I1 それまで I8。。。
9.2.2 void input_set_mode（uint8_t ch、uint8_tモード）。。。。。。。。。。。。。。。。。。。。。。。153
9.2.3 uint16_t input_get（uint8_t ch）。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
9.2.4出⼒ O1 それまで O8 と M1 それまで M4。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
9.2.5 void output_set（uint8_tポート、uint8_tモード、uint8_t pwm）。。。。。。。。。。。。。。。。
9.2.6 void motor_set（uint8_tポート、uint8_tモード、uint8_t pwm）。。。。。。。。。。。。。。。。
9.2.7 void motor_counter（uint8_tポート、uint8_tモード、uint8_t pwm、uint16_tカウンター）。。
9.2.8 bool motor_counter_active（uint8_tポート）。。。。。。。。。。。。。。。。。。。。。。。。。。。
9.2.9 void motor_counter_set_brake（uint8_tポート、ブール値オン）。。。。。。。。。。。。。。。。。。。155
9.2.10カウンター⼊⼒ C1 それまで C4。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
9.2.11 void counter_set_mode（uint8_t ch、uint8_tモード）。。。。。。。。。。。。。。。。。。。。。。
9.2.12 uint16_t counter_get（uint8_t ch）。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
9.2.13 void counter_clear（uint8_t ch）。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
9.2.14 bool counter_get_state（uint8_t ch）。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
9.2.15 void Ultrasonic_enable（bool ena）。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
9.2.16 int16_t超⾳波_get（）。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

9.3コマンドの概要。。。

149
149
150
150
151
151
152
152
152
152
153

。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

153
154
154
154
155
155

156
156
156
157
157
157
157
158

10 DIY
10.1建設段階の電源

10.1.1コンポーネントの極性。。
10.1.2制御測定。。。

10.2マイクロコントローラの第2ステージ。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
10.2.1マイクロコントローラの機能テスト。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

10.3第3建設段階の⼊り⼝
10.4第4建設段階の成果

10.4.15ボルトでの出⼒テスト。。
10.4.2ボードの履歴。。。

159
159
160
160
161
161
162
163
163
164

。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

。。。
。。。

A。回路図 165

B。回路基板のレイアウト 166

C。配置計画 167

D。⼨法 168

E。ケーシング 169

第1章

印⼼

建設キット⽤の電⼦機器とコンピュータモジュールは、1980年代に個⼈使⽤の家庭⽤コンピュータが始まって以来存在
しています。これらのモジュールは、それ⾃体のインテリジェンスがほとんどなく、主にホームコンピューターとモ
ジュラーシステムのモーターおよびスイッチ間の信号調整を担当していました。そのため、これらのモジュールは通
常、インターフェイス、つまりコンピューターとモデル。

何年にもわたって、家庭⽤コンピュータのパフォーマンスは向上し、電⼦モジュールも多くのことを学びました。とりわけ、インター
フェースは時間の経過とともにコントローラーになりました。主にパッシブなインターフェースは、ホームコンピューターまたは後に
PCがプログラミングにのみ必要とする独⾃のインテリジェンスを備えたモジュールになりました。プログラムされると、これらのコ
ントローラーはモデルを独⽴して操作することもできます。この⽬的のために、PCで開発されたプログラムデータがコントローラに
ロードされ、そこで保存されました。

今⽇のLegoまたはSchertechnikコントローラーは、それ⾃体が強⼒なコンピューターです。エンドユーザーがその複雑
さを利⽤できるようにするために、メーカーは、快適なユーザーインターフェイスの背後にあるデバイスで実⾏されて
いる電⼦コンポーネントとソフトウェアの詳細を隠しています。残念ながら、このように、そのようなシステムは、そ
のようなコントローラーの構造と機能についての知識を与える機会を逃しています。メーカーは、⽂字通りの意味で複
雑な機械⻭⾞を理解できるようにすることに優れていますが、関連するコントローラーは、ユーザーにとって不透明な
構成要素です。

同時に、いわゆるメーカー運動は、ミレニアムの変わり⽬から発展しました。それは、⽇曜⼤⼯のアイデアをエレクト
ロニクス開発の分野に持ち込みます。Raspberry PiやArduinoなどのシステムでは、これらの完全にアクセス可能で⽂書
化されたコントローラーのすべての技術的な詳細を調査し、独⾃のコントローラーを開発することができます。⼤規模
なコミュニティは、広範なノウハウを提供し、知識交換のためのプラットフォームを提供します。SchertechnikやLego
のコントローラーとは対照的に、ここではコントローラーの内部に焦点を当てています。ただし、これらのコントロー
ラーを使⽤するには、電⼦機器⾃体を構築するとき、特にロボット⼯学プロジェクトで機械部品を実装するときに、あ
る程度の⼿動スキルが必要になることがよくあります。

1.1 ftドゥイーノ-概念

の背後にある考え⽅ ftドゥイーノ 2つの世界の間に架け橋を築くことです。⼀⽅では、Schertechnik構築キットの
Roboticsシリーズに機械的および電気的にシームレスに統合されています。⼀⽅、組み込みシステムのソフトウェア開
発⽤のArduinoエコシステムに完全に適合します。

1.1.1Schertechnikモジュラーシステム

Fischertechnikは、テクノロジー指向の建設玩具です。焦点は、⼒学、電気機械、電⼦⼯学、そしてますますロボット⼯
学と情報処理コンポーネントの必要な統合にあります。

Fischertechnikは、80年代初頭から電⼦モジュールを開発および販売してきました。これにより、コンピューターと機
械モデル間の接続が可能になるか、独⾃のインテリジェンスが得られます。これに使⽤されるプラグインコネクタ、お
よびセンサー（ボタン、スイッチ、光センサーなど）およびアクチュエーター（ランプ、モーター、バルブなど）は、
⻑年にわたって相互に互換性があり、それでも必要に応じて互いに組み合わせることができます。

8⽇ 第1章;序章

図1.1： ftドゥイーノ

最後の2世代のコントローラー（Schertechnik TXおよびTXTコントローラー）は、同等の機械的サイズを持ち、モデルに
接続するための同等の数とタイプの接続を備えています。現在のすべてのロボティクスキットのモデルは、これらの接
続⽤に設計されており、互いに組み合わせることができます。

（a）TXコントローラー （b）TXTコントローラー

図1.2：元のコントローラー せん断技術

元のコントローラーは両⽅とも、8つのアナログ⼊⼒、8つのアナログ出⼒、4つの⾼速カウンター⼊⼒、およびIを備え
ています。2C拡張コネクタ。

Fischertechnik⾃体が、社内コントローラー⽤のビジュアルソフトウェア開発⽤のPCソフトウェアRoboProを販売して
います。RoboProの使⽤を開始するのは⽐較的簡単で、すでに⼦供たちにアピールしています。中等学校、⼤学、職業
訓練における実践的でコンテンツ関連のプロジェクトに関しては、RoboProの限界にすぐに到達します。Arduinoプラッ
トフォームなどのシステムは、これらの分野で確⽴されています。

1.1.2Arduinoシステム

Arduinoエコシステムは、組み込みシステムのエントリーレベルおよびセミプロフェッショナルな開発とプログラミング
の事実上の標準として、近年確⽴されています。組み込みシステムは通常、機械的に⼩さなコンピューターと情報処理
モジュールであり、マシン内で制御と規制のタスクを引き受け、さらに頻繁に外界と通信します。

Arduino IDEは、Windows、Linuxで使⽤できる明確で使いやすいプログラミングインターフェイスです。

1.2。theftドゥイーノコントローラ 9

（a）Arduino開発環境（IDE） （b）Arduino-Leonardoコントローラー

図1.3：Arduino開発環境とコントローラー

とApplePCを使⽤することができます。Arduino-Leonardoなど、プログラム対象のデバイスは、USB経由でPCに接続さ
れる⼩型で安価なボードです。それらは通常、ハウジングなしで提供され、プラグコネクタを介してセンサーとアク
チュエータを接続するための多数の信号線を提供します。Arduinoプラットフォームで実⾏される典型的なタスクは、単
純なデータ取得（温度ロギングなど）と制御タスク（ブラインド制御など）です。

Arduino IDEで作成されたプログラムは、Arduinoの世界ではスケッチと呼ばれています。Arduino IDEの助けを借りて、
ftドゥイーノ USBケーブルを介してデバイスに直接ダウンロードします。

Arduinoプラットフォームは、単純なロボット実験にも最適です。最も単純なロボットプロジェクトでさえ、機械的に満⾜のい
く実装は、多くの場合、より困難です。schertechnikシステムはこのギャップを埋めることができます。

1.2 ftドゥイーノコントローラ

the ftドゥイーノコントローラーは、意図的に機械的および電気的にTXおよびTXTコントローラーに基づいているため、
現在のロボットボックスと直接組み合わせることができます。同時に、ソフトウェアはArduinoシステムとの互換性を維
持しました。

USB その周り-
プラグリセット LED +-

9V = アナログ
出⼒
O1からO8

（モーター出⼒
M1からM4）

アナログ
⼊り⼝
I1からI8

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

O4

O6

カウンター⼊⼒
C1からC4

I²C

+ 9V + 9V

図1.4：の接続 ftドゥイーノ

10 第1章;序章

1.2.1マイクロコントローラー

の中⼼ ftドゥイーノ タイプATmega32u4のマイクロコントローラです。このマイクロコントローラーはMicrochip（以前の
Atmel）によって製造されており、Arduino-Leonardoでも使⽤されています。レオナルドのために翻訳されたスケッチは、多
くの場合、直接ftドゥイーノ ぬるい。

USB I²C

O1-O4
ATmega32u4

2.5k
⽺。

MC33879
USB

AVR8
プロセッサー-

芯
32k

閃光 I²C O5-O8

MC33879
1k

EEPROM SPI
導いた

IO-
ポート ADC タイマー

プルアップ

MUX

C1-C4 I1-I8

図1.5：のブロック図 ftドゥイーノ

ATmega32u4コントローラーは、ほとんどのArduinoボードのベースとなっているいわゆるAVRファミリーのメンバーです。
AVRコントローラーは⼩型で安価であり、動作するために必要な追加コンポーネントはわずかです。それらのメモリと計算能⼒
は、ロボティクスシリーズのすべてのSchertechnikモデルの操作に明らかに⼗分です。

ATmega32u4には、スケッチプログラムメモリとして使⽤される32キロバイトの不揮発性フラッシュメモリと、データ
ストレージ⽤の2 .5キロバイトの内部RAMメモリがあります。プロセッサクロックは16メガヘルツです。⼀度に1つのス
ケッチをフラッシュメモリに永続的に保存でき、ftドゥイーノ 電源から切断されています。

ATmega32u4は、チップ上ですでに直接USBをサポートしているAVRファミリーの数少ないメンバーの1つです。このよ
うにftドゥイーノ PCのUSBデバイスとして⾮常に柔軟に使⽤できます。

ブートローダー

the ftドゥイーノ ATmega32u4にプリインストールされたいわゆるCaterinaブートローダーで提供されます。このプログラムは、
ATmega32u4の32キロバイトのフラッシュメモリのうち4つを恒久的に占有し、簡単に削除または変更することはできません。

ブートローダーはPCとの通信を可能にし、PCが28キロバイトのフラッシュメモリにプログラムデータを保存または交換
できるようにします。このようにして、ブートローダーを使⽤してスケッチをにダウンロードできます。ftドゥイーノ。

内部LEDのステータスは、ブートローダーがアクティブであり、スケッチが現在実⾏されていないことを⽰しています（1.2.4
を参照）。

1.2。theftドゥイーノコントローラ 11⽇

1.2.2USBポート

プログラミングとデータ転送のためのPCへの接続は、USBを介して確⽴されます。theftドゥイーノ いわゆるミニUSBソ
ケットがあり、標準のミニUSBケーブルを使⽤してPCに接続されます。

図1.6：電源とUSB接続 ftドゥイーノ

1.2.3リセットボタン

通常、ArduinoIDEはのブートローダーをロードできます ftドゥイーノ 新しいスケッチをダウンロードするには、アク
ティブにします。ただし、ダウンロードしたスケッチに通常のプログラム実⾏を妨げるエラーが含まれている場合、通
常のプログラム実⾏中にUSB通信が機能しない可能性があり、ArduinoIDEは機能します。ftドゥイーノ もはや彼⾃⾝の
合意に応じることはできません。

この場合、 ftドゥイーノ リセットボタンを介して。これを押すと、ブートローダーが強制的に起動し、それに応じて
LEDがブートローダーの開始を⽰します。

スケッチに⽋陥があるもの ftドゥイーノ したがって、ダウンロードの直前にリセットボタンを短く押すことで、修正さ
れたスケッチを簡単に提供できます。詳細については、セクション1.3を参照してください。

1.2.4内部LED

the ftドゥイーノ 緑と⾚の内部発光ダイオード（LED）があります。緑⾊の電源LEDは、内部の5ボルトの分岐に電⼒が供
給されていることと、ftドゥイーノ 供給されます。

⾚いLEDはあなた⾃⾝の使⽤のために利⽤可能であり、名前の下で彼⾃⾝のスケッチからユーザーが作成することができ
ます LED_BUILTIN 対処済み（セクション3.1を参照）。

⾚いLEDは、Caterinaブートローダーでも使⽤されています。 ftドゥイーノ 使⽤済み。ブートローダーがアクティブな場合、LEDは毎秒穏やか
に明るくなり暗くなります（フェード）。

1.2.5電源

the ftドゥイーノ 次の4つの⽅法で電圧を供給することができます。

USB The ftドゥイーノ 他の電源が接続されていない場合は常に供給されます。USB
ただし、アナログ出⼒を動作させるには電源が ⼗分ではありません。USB電源で使⽤できるのは⼊⼒のみです。
さらに、アナログ⼊⼒での抵抗測定の精度が⼤幅に低下します（1.2.6を参照）。

12⽇ 第1章;序章

図1.7： ftドゥイーノ 推奨されるオリジナルのSchertechnik電源

バレルコネクタ しますか ftドゥイーノ バレルコネクタを使⽤します。たとえば、schertechnik電源ユニット505287を使⽤します。1 または電源
Schertechnikパワーセット505283から2 9ボルトで供給されるので、全体 ftドゥイーノ そこから供給され、USB接
続がロードされていません。この場合、アナログ出⼒を使⽤することができ、アナログ⼊⼒での抵抗測定は完全な
精度で実⾏されます。サードパーティのネットワークデバイスを使⽤する場合、schertechnikはアイテム番号
134863で提供しています3 通常の5mm中空プラグからschertechnikが使⽤する3.45mmプラグへのアダプター。

9V =⼊⼒ の供給 ftドゥイーノ 例：バッテリーセットまたはバッテリーセットからのバッテリー349694位 と同等です
バレルコネクタを介した供給。しますかftドゥイーノ 9V =⼊⼒およびバレルコネクタを介して供給される場合、電源はよ
り⾼い電圧を供給する電源から供給されます。バッテリーがシステムにフィードバックされていないか、バッテリーが充
電されています。

私。2C。 私について2Cポートは ftドゥイーノ 主に⼩さなディスプレイや
センサー。ただし、この接続を介して⾃分で供給することも可能です。ここでは、USB経由の供給と同じ制限が適
⽤されます。このように、例えば、2つの結合された供給 ftドゥイーノ■単⼀のソースから可能です（セクション
6.13.5を参照）。

最⼩1.3mm ⼨法
+ 9V

最⼤3.45mm

図1.8：3.45mmSchertechnikバレルコネクタ

注意 未知または⾮常に古い電圧源を使⽤する場合に推奨されます。多くの場合、印刷された公称電圧は現実から⼤きく
外れています。図1.9に⽰す電源ユニットは、6.8ボルトの出⼒で27ボルトを超える開回路電圧を提供します。単純なマル
チメータはまだ適度な9.4ボルトを⽰しており、この電源ユニットがftドゥイーノ 適切。オシロスコープだけが正確な電
圧曲線を明らかにし、電圧が短時間でも27.2ボルトに達することを⽰しています。スイッチのオンとオフのプロセス中
に、⼤幅に⾼い電圧が発⽣する可能性があり、ftドゥイーノ 損傷する。

1
2
3
4位

schertechnikデータベース： https://ft-datenbank.de/tickets?fulltext=505287
schertechnikデータベース： https://ft-datenbank.de/tickets?fulltext=505283
schertechnikデータベース： https://ft-datenbank.de/tickets?fulltext=134863
schertechnikデータベース： https://ft-datenbank.de/tickets?fulltext=34969

https://ft-datenbank.de/tickets?fulltext=505287
https://ft-datenbank.de/tickets?fulltext=505283
https://ft-datenbank.de/tickets?fulltext=134863
https://ft-datenbank.de/tickets?fulltext=34969

1.2。theftドゥイーノコントローラ 13⽇

（a）マルチメータは良好な9ボルトを⽰しています （b）オシロスコープは27ボルトを超えるピークを⽰します

図1.9：注意：古いSchertechnik変圧器は、6.8ボルトの出⼒で27V以上を供給し、 ftドゥイーノ 適切ではありません

このため、このような古いまたは未知の電圧源を使⽤する場合は⼗分に注意し、疑わしい場合は使⽤を控える必要があ
ります。

図1.10：古いものと ftドゥイーノ 不適切な電源

疑わしい場合は、Schertechnikの最新の電源を使⽤する必要があります。現在のFischertechnik電源ユニット9V5052875

34969バッテリーセットのバッテリーと同様に、理想的に適しています6⽇ またはバッテリーホルダーの9ボルトブロッ
ク。

サードパーティのデバイスを使⽤することがどうしても必要な場合は、安定した9ボルトの電圧を確保する必要があります。強⼒なモーターを
操作できるようにするには、アンペア数が1.5アンペアを下回らないようにする必要があります。例として、図1.11に⽰すReichelt-
Onlineversandのユニバーサルスイッチモード電源があります。7⽇。

5
6⽇

schertechnikデータベース： https://ft-datenbank.de/tickets?fulltext=505287
schertechnikデータベース： https://ft-datenbank.de/tickets?fulltext=34969

7⽇Reichelt MW 3R15GS https://www.reichelt.de/universal-schaltnetzteil-18-w-3-12-v-1500-ma-mw-3r15gs-p87340.html

https://ft-datenbank.de/tickets?fulltext=505287
https://ft-datenbank.de/tickets?fulltext=34969
https://www.reichelt.de/universal-schaltnetzteil-18-w-3-12-v-1500-ma-mw-3r15gs-p87340.html

14⽇ 第1章;序章

図1.11： ftドゥイーノ オンライン配信からの適切なユニバーサル電源

1.2.6接続

の接続 ftドゥイーノ Schertechnikと互換性のある⼊⼒と出⼒に分けられます。これらは通常の2.6mmシングルプラグ
と、コンピュータセクターの通常のコネクタに適しています。schertechnikと互換性のある⼊⼒と出⼒は、
schertechnikTXTコントローラーと同じように配置されています。したがって、TXTの配線⽅式は通常直接採⽤できま
す。

アナログ⼊⼒

the ftドゥイーノ 8つのアナログ⼊⼒があります I1 それまで I8、 0〜10ボルトの電圧と0〜10キロオームを超える抵抗を
記録するために使⽤できます。

⼊⼒は、⾼値の直列抵抗を使⽤して、短絡や過電圧および低電圧から保護されています。

各⼊⼒は、ATmega32u4マイクロコントローラーの独⾃のアナログ⼊⼒に接続されています。アナログ値の取得は、最
⼤10ビットの分解能（0〜1023の値の範囲に対応）で実⾏でき、マイクロコントローラーのハードウェアで直接実⾏され
ます。

分圧器は、マイクロコントローラーの⼊⼒電圧範囲を0〜5ボルトから、schertechnikが使⽤する0〜10ボルトの範囲に拡
張します。Schertechnikモデルで発⽣するすべての応⼒を記録することができます。

任意の⼊⼒を使⽤して抵抗を測定できます ftドゥイーノ-5ボルトに対する抵抗器と相互接続されています。この抵抗器は
外部抵抗器との分圧器として機能し、外部接続された抵抗器の値はマイクロコントローラーで測定された電圧から測定
できます。Schertechnikモデルで⼀般的に使⽤されるすべての抵抗は、この⽅法で記録できます。

アナログ⼊⼒は外部の9ボルト電源に依存しませんが、PCのUSBポートを介して電源が供給されている場合にも機能しま
す。ただし、この場合、抵抗測定の精度は⼤幅に低下します。

縁。

アナログ出⼒

the ftドゥイーノ 8つのアナログ出⼒があります O1 それまで O8。 これらの出⼒は、の2つの特別なドライバーブロックを介してアクティブ化
されます。 ftドゥイーノ 制御されます。ドライバモジュールは、8つの出⼒のそれぞれを個別に制御できます。それらはそれらと同⼀です

1.2。theftドゥイーノコントローラ 15⽇

せん断技術は、TXおよびTXTコントローラーで使⽤されます。したがって、出⼒は、TXおよびTXTコントローラーでも操作でき
るすべてのSchertechnikモーターおよびアクチュエーターと互換性があります。出⼒あたりの利⽤可能な最⼤電流は600mAか
ら1.2Aです。

出⼒は、の純粋なUSB電源⽤です。 ftドゥイーノ 利⽤不可。

使⽤されるMC33879ドライバモジュールは、短絡防⽌であり、出⼒の過電圧および低電圧に対して堅牢です。

8つの出⼒はすべて、互いに独⽴して、グランド電圧または⼊⼒電圧、および⾼抵抗に切り替えることができます。2つ
の個別の出⼒を組み合わせて、モーター出⼒を形成できます。個々の出⼒O1 と O2 エンジン出⼒を形成する M1、O3 と
O4 形 M2 などなど。

出⼒のアナログ値は、パルス幅変調（PWM）として知られているものによって⽣成されます。出⼒は連続的にすばやく
オン/オフされるため、モーター、ランプ、およびその他の低迷する消費者は信号を追跡できず、平均値に従って動作し
ます。この⼿順は、TXおよびTXTコントローラーでも同じように使⽤されます。

両⽅のMC33879は、 ftドゥイーノ いわゆるSPIインターフェースを介して内部接続されています。これは、マイクロコン
トローラの特別なPWM出⼒を使⽤してパルス幅変調を⽣成できないことを意味するため、PWM信号はスケッチまたは使
⽤するソフトウェアライブラリによって⽣成する必要があります（第9章を参照）。いわゆるPWM周波数は、使⽤するス
ケッチによって決定され、必要に応じて変更できます。

PWMの詳細については、セクション6.3を参照してください。

カウンター⼊⼒

the ftドゥイーノ 4つの特別なカウンター⼊⼒があります C1 それまで C4。 これらの⼊⼒は、純粋なデジタル信号を記録
し、イベントを⾼速で評価できます。スケッチに応じて、記録可能な最⼤信号レートは1秒あたり数10,000イベントで
す。

カウンター⼊⼒は、Schertechnikエンコーダーモーターのエンコーダーと互換性があり、特に回転⾓の評価と速度の決
定に使⽤できます。

カウンター⼊⼒ C1 Schertechnik ROBOTX超⾳波距離センサー1330009を使⽤するオプションもあります8⽇

評価します。

注：ここで説明した3線式接続ケーブル付きの超⾳波センサーに加えて、4線式ケーブル付きの⾮常に古いセンサーがあ
ります。⻑い間利⽤できなかったこの⾮常に古いセンサーは、ftドゥイーノ 互換性がありません（また、現在の元の
Schertechnikコントローラーのいずれとも互換性がありません）。

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

O4

O6

I²C

+ 9V + 9V

図1.12：超⾳波センサー133009の接続

8⽇ schertechnikデータベース： https://ft-datenbank.de/tickets?fulltext=133009

https://ft-datenbank.de/tickets?fulltext=133009

16 第1章;序章

私。2Cコネクタ

私。2C接続は、SchertechnikTXコントローラーの接続と電気的および機械的に互換性があります。いわゆる私はそこの
デバイスから導き出しました2C-BusはArduino環境でも頻繁に使⽤され、センサー、アナログ-デジタルコンバーター、
ディスプレイなどの適切な電⼦部品の接続を可能にします。また、私は2C-Busいくつかのカップリング ftドゥイーノs可
能なだけでなく、の結合 ftドゥイーノ セクション6.13で説明されているように、TXコントローラーとTXTコントロー
ラーを使⽤します。

SDA
SCL

⼨法
+ 5V

SCL
SDA

⼨法
+ 5V

図1.13：Iのソケットとケーブルの割り当て2Cバス ftドゥイーノ

Iの信号2C接続は、TXコントローラーのように5ボルトレベルを使⽤します。また、の電源ftドゥイーノ 接続されたコン
ポーネントに供給するために5ボルトが提供されます。を達成するために、5ボルトの出⼒から最⼤100mAを引き出すこ
とができます。ftドゥイーノ-内部電源に過負荷をかけないでください

図1.14：Iから保護キャップを取り外します。2のCポート ftドゥイーノ

注意！ schertechnik TXTコントローラーおよびTXTでの操作を⽬的としたコンポーネントは、 ftドゥイーノ 互換性。TXT
との間の直接リンクftドゥイーノ TXTに損傷を与える可能性があります。TXTまたはTXTでの動作を⽬的としたコンポー
ネントをに接続する必要がありますftドゥイーノ 使⽤され、Iに⼀致します。2セクション6.13.5で説明されている中間の
経営幹部レベルの調整。

注意！ 私のもの2C接続にある信号は直接であり、 ftドゥイーノ またはその電源に接続されています。この接続で短絡が
発⽣した場合、または5Vを超える電圧が印加された場合、ftドゥイーノ 破壊されます。私。2したがって、C接続は経験
豊富なユーザーのみが使⽤する必要があります。このため、ftドゥイーノ Iに保護キャップが付いています。2Cポートが
分散されています。必要に応じて、このキャップはドライバーで慎重に取り外すことができます。

1.2。theftドゥイーノコントローラ 17⽇

1.2.7内部OLEDディスプレイを備えたバリアント

のバリエーションがあります ftドゥイーノすでにOLEDディスプレイが組み込まれています。ディスプレイの解像度は128 * 32
ピクセルで、Iの内部にあります。2Cバス接続。

図1.15：内部OLEDの宇宙船アニメーション ftドゥイーノ

OLEDftドゥイーノ は、スイッチを⼊れた直後に表⽰を初期化し、ftDuinoのレタリングを表⽰する適応ブートローダーを備え
ています。ブートローダーはアクティブにディスプレイに対応するため、OLED-ftドゥイーノ いつも私。2Cバスマスター。Aft
ドゥイーノ したがって、ディスプレイが組み込まれている場合は、Iとしても、ごく限られた範囲でしか適していません。2仕事
をするCクライアント、そして別の私からも2対処するCマスター。ただし、彼はマスターとして無制限に作業でき、たとえば、
別のディスプレイレスで作業できます。ftドゥイーノ 1⽇2Cと話してください。追加の外部I。2Cデバイスは通常通り接続できま
す。

図1.16：ArduinoIDEのライブラリマネージャーにあるAdafruitGPXライブラリ

the ftドゥイーノ-インスタレーションハウス
の独⾃のバリアントを介して FtduinoDisplay.cpp-としょうかん。すべての例には、ArduinoIDEのライブラリマネージャーを
使⽤して数回クリックするだけでインストールできるものも必要です。

ファイル。例 。Ftduino 。InternalOLED それぞれのいくつかの例

AdafruitGFXライブラリ。

これの迅速かつ簡単なバリアントをもたらします例
とのライブラリ。他にIがない場合は常に使⽤する必要があります。2上のCデバイス ftドゥイーノ 操作され、それは速い
画像の構築に依存します。

ファイル。例 。Ftduino 。InternalOLED 。Ship3D

例
ここでは、ライブラリとイメージの構築が⼤幅に遅くなります。Iにアクセスするには。2C-Busは、ワイヤーライブラリ
と、ワイヤーライブラリによって制御される他の操作と⼀緒に使⽤します。2Cセンサーが可能です。この変種は
FtduinoDisplay.cpp-ライブラリは、OLEDの場合にも使⽤されますftドゥイーノ さらに遠く ftドゥイーノs私について2C
は、追加の⼊⼒と出⼒を提供するために接続されています。

ファイル。例 。Ftduino 。InternalOLED 。Ship3DWire ⼀⽅、Arduinoワイヤーに基づいています

内部OLEDディスプレイがアドレスを占有します 0x3C（10進数の60）であるため、このアドレスで他のOLEDディスプレイと並
⾏して簡単に操作することはできません。

18⽇ 第1章;序章

1.2.8Arduinoの経験豊富なユーザー向けの注意事項

古典的なArduinoと ftドゥイーノ。まず第⼀に、これらはで使⽤される保護およびドライバー回路ですftドゥイーノ 接続
がせん断技術と互換性があることを保証します。これらの回路は、の⼊⼒と出⼒の理由ですftドゥイーノ 通常のArduino
ではありません pinMode（） と digitalWrite（）-機能は魅⼒的です。これらの機能は、ATmega32u4マイクロコント
ローラーの接続を直接制御するように設計されており、ftドゥイーノ 追加の回路が含まれています。

このため、 ftドゥイーノ 第9章で説明されているように、独⾃のライブラリを介して制御されます。

経験豊富なユーザーは、引き続き、 ftドゥイーノ 伝える。付録Aの回路図は、これに必要なすべての情報を提供します。

1.3問題の解決策

1.3.1の緑⾊のLED ftドゥイーノ 点灯しない

まず第⼀に、 ftドゥイーノ すべての接続から切断され、USBポートを介してのみPCに接続されます。の緑⾊発光ダイ
オードftドゥイーノ すぐに点灯する必要があります。そうでない場合は、別のPCまたは別のUSBポートを試す必要があ
ります。

それでも問題が解決しない場合は、最初にUSBケーブルを確認してください。他のデバイスはこのケーブルで動作しますか？ケーブルの交換が
必要になる場合があります。

1.3.2 ftドゥイーノ としてPCに表⽰されません COM：-ポートオン

the ftドゥイーノ PCによって認識されなくなり、 COM：-ポートが作成されました。

ライトの緑⾊のLEDが点灯します ftドゥイーノ？そうでない場合は、1.3.1の⼿順に従ってください。

緑⾊のLEDが点灯した場合は、リセットボタン（1.2.3を参照）を短く押すと、のブートローダーがアクティブになります。 ftドゥイーノ 数秒
間アクティブにします。これは、セクション1.2.4で説明されているように、⾚⾊LEDのゆっくりとしたフェードインおよびフェードアウトに
よって認識できます。この間、ftドゥイーノ PCによって認識されます。これは、セクション2.1.3で説明されているように、Windowsのデバイ
スマネージャに表⽰されます。

しますか ftドゥイーノ リセット後に検出されたが、デバイスマネージャのビューから数秒後に消えるか、不明なデバイ
スとして表⽰された場合は、スケッチに⽋陥がある可能性があります。 ftドゥイーノ ロードされ、ArduinoIDEは ftドゥ
イーノ に接続します。この場合、Arduino IDEでまばたきの例（セクション3.1を参照）を開く必要があります。ftドゥ
イーノ リセットボタンを短く押してブートローダーモードにし、その直後にArduinoIDEのダウンロードボタンを押しま
す。作業スケッチがロードされるとすぐに、ftドゥイーノ リセットボタンと対応するボタンを⼿動で押さなくてもPCに
よって認識されます COM：-ポートが再表⽰されます。

the ftドゥイーノ ブートローダーに数秒間留まり、その後通常のスケッチモードに戻ります。したがって、リセットボタ
ンを押してからArduinoIDEからダウンロードを開始するまでの時間はできるだけ短くする必要があります。

1.3.3 ftドゥイーノ 動作しますが、出⼒は動作しません

出⼒を使⽤するには、 ftドゥイーノ バレルコネクタまたは通常のSchertechnikコネクタを介して9ボルトの電圧源に接続
します。持っていますftドゥイーノ 9ボルトの供給が不⼗分な場合、出⼒は動作できません。以来ftドゥイーノ それがよ
り低い電圧で動作しているとしても、その機能は⼗分な9ボルトの供給が利⽤可能であることを確実に⽰すものではあり
ません。

それは ftドゥイーノ USB経由でPCに接続され、9ボルト電源が不⾜または不⾜した場合に、そこから電源を供給しま
す。⾏きますftドゥイーノ 完全にオフ、USB接続を切断するとすぐに、9ボルトの電源がなくなります

1.3。問題解決 19⽇

また、極性と電圧が正しいか⼗分であることを確認する必要があります。必要に応じて、バッテリーを交換するか、使
⽤したバッテリーを充電する必要があります。

1.3.4 ftドゥイーノ 恥じることはできません

たまたま ftドゥイーノ PCによって（⼀時的に）認識されますが、単に恥じることはできません。これには多くの理由が
考えられますが、通常は次の2つの原因のいずれかです。

?? USB接続が電気的または機械的に不安定です

?? コンピュータ上の別のプログラムも通信しています ftドゥイーノ

機械的または電気的に不安定な接続は、通常、USBケーブルの緩みが原因で発⽣します。この場合、通常はUSBケーブ
ルを少し揺すってftドゥイーノ 少しの間緊張を失い、それを再開させます。スケッチのアップロード中にこれが発⽣した
場合、スケッチはぬるま湯ではなく、ftドゥイーノ セクション1.3.2で説明されているように、リセットボタンを押した
後にのみPCによって認識されます。

原則として、電源LEDも少し光ります。図1.17では、フラッシュ中にUSBコネクタを引き抜くことにより、対応するエ
ラーが発⽣しました。通常、別のUSBケーブルを使⽤すると役⽴ちます。

図1.17：アップロードの失敗

USBポートに緩い接続がない場合、詳細出⼒はアップロード中に追加情報を提供する場合があります。これらの出⼒
は、設定でアクティブになります。

可能な出⼒は次のようになります。

書く| ##################### avrdude：エラー：プログラマーがコマンドに応答しませんでした：set addr avrdude：
エラー：プログラマーがコマンドに応答しませんでした：書き込みブロック
＃ ＃ * * * 失敗した;

* * * 失敗した;
* * * 失敗した;
* * * 失敗した;
* * * 失敗した;
* * * 失敗した;
* * * 失敗した;
* * * 失敗した;
* * * 失敗した;
* * * 失敗した;

avrdude：エラー：バタフライプログラマーはavr_write_page（）を使⽤しますが、cmd（）メ
ソッドを提供しません。

20⽇ 第1章;序章

図1.18：アップロード中に詳細なデバッグ出⼒を有効にする

* * * 127ページ（アドレス0x0000-0x007f）の書き込みに失敗しました
* * * 失敗した;
* * * 失敗した;
* * * 失敗した;
* * * 失敗した;

ここでは、データ転送の途中でエラーが発⽣します。これはLinuxPCで最も⼀般的です。原因は通常、いわゆるモデムマ
ネージャであり、モデムを管理し、ftドゥイーノ 接続して、モデムかどうかを確認します。これに関するいくつかのヒン
トは、セクション2.1.4にすでに記載されています。

ファイルのインストールに加えて/etc / udev / rules.d / 99-ftduino.rules 多くの場合、モデムマネージャサービスを使⽤すると
役⽴ちます systemctrl-まず、テストとしてコマンドを停⽌します。

sudo systemctl stop ModemManager.service

または成功した場合は永続的に：

sudo systemctl disable ModemManager.service

この問題はそうではありません ftドゥイーノ-固有ですが、たとえば、Arduino-Leonardoにも影響します。したがって、レオナルドの
問題に対応するインターネット上の解決策は、多くの場合、ftドゥイーノ 移⾏。

1.3.5 ftドゥイーノ レオナルドとして認識されています

可能性があります ftドゥイーノ 彼の⾝元とIDEではなく ftDuino Linuxシステムの例として図1.19に⽰すように、は
Leonardoとして表⽰されます。

図1.19：IDEは ftドゥイーノ レオナルドとして

これは、スケッチをアップロードする前にIDEを使⽤しない場合に発⽣します ftDuino ボードとしてですが、
ArduinoLeonardoです。

1.3。問題解決 21

この状態は完全に重要ではありません。セクション2.2.2で説明されているようにボードを⼊⼿したらすぐにftDuino 次
にスケッチをアップロードすると、次のように設定されます。 ftDuino 認識された。

第2章

インストール

を使⽤するためのソフトウェアのインストール ftドゥイーノ いくつかのステップで⾏われます。まず第⼀に、ftドゥイーノ 適
切なドライバーにより、コンピューターはコンピューターがどのように動作するかを学習します。 ftドゥイーノ 通信する必要
があります。

2番⽬のステップでは、いわゆるArduino IDEがインストールされます。つまり、実際のプログラミング環境とArduinoIDEがインストールされ
ます。 ftドゥイーノ 接続されています。

インストールおよび第3章の最初のステップでは、 ftドゥイーノ USB経由でPCに接続します。電源ユニットまたはバッ
テリーを介した追加の電源は、ftドゥイーノ 使⽤すべきです。

2.1ドライバー

ほとんどのオペレーティングシステムは ftドゥイーノ プラグを差し込むとすぐにコンピュータによって認識されます。これは、
Linux、MacOS X、Windows 10などに適⽤されますが、Windows7には適⽤されません。

2.1.1 Windows 10

Windows 10でftDuinoを使⽤する場合、ユーザーがドライバーをインストールする必要はありません。

⼀度 ftドゥイーノ Windows 10を実⾏しているPCに接続されている場合、適切なドライバーが⾃動的にインストールさ
れます。Windows 10は、これを初めて表⽰しますftドゥイーノ 画⾯の右下に対応するメッセージが表⽰されます。数秒
後、インストールが完了し、ftドゥイーノ 使⽤可能。

さらにプラグを抜き差ししても、それ以上のメッセージは⽣成されませんが、 ftドゥイーノ Windows 10では、ハード
ウェアを検出したときにWindowsPCが発する典型的なメロディーによっていつでも認識されます。

2.1.2 Windows8.0およびWindows8.1

Windows 8でのドライバーのインストールは、⾮常にありがたいものです。また、可能であれば、Windows10を使⽤する必要があります。

Windows 8の問題は、.inf-下のファイル htt-
ps：//harbaum.github.io/ftduino/ftduino/driver/ftduino.inf はMicrosoftによって署名されておらず、Windows 8は、たとえ
ば、署名されていないドライバーをインストールすることをWindows7よりもユーザーにとってはるかに困難にします。この場
合、実際のドライバーはMicrosoftとによってすでに提供されているコンポーネントであるため、これは特に厄介です。inf-
Windows 8は、ファイルにそれを使⽤するように指⽰するだけです。実際のドライバーはMicrosoftから提供され、それに応じ
て署名されています。

ダウンロードするとき。inf-ファイルがとして保存されていないことを確認してください。txt-ファイルが保存されます。⼀部のWindowsおよびブラウザのバー
ジョンは、ファイルのダウンロード時に⽬に⾒えない形でハングすることがよくあります。txt-で終わります。

https://harbaum.github.io/ftduino/ftduino/driver/ftduino.inf
https://harbaum.github.io/ftduino/ftduino/driver/ftduino.inf

2.1。運転者 23

署名されていないドライバーをインストールするためのインターネット上のさまざまな⼿順は、検索⽤語windows8で署名されていないドライ
バーをインストールすることで簡単に⾒つけることができます。主な⼿順を以下に簡単に要約します。

1.チャームメニューの設定領域を次のように開きます Windowsキー+「I」キー。 クリック 消す。

2.Shiftキーを押しながら 再起動 選ぶ。次に、メニューが次々に表⽰されます トラブルシューティング、 それから 詳
細オプション、スタートアップ設定 そして最後に 再起動 選択する必要があります。

3.起動プロセスの後、キーを⼊⼒できる新しいメニューが表⽰されます。7 '（F7 また 7⽇ オンディジットブロック）は、署名され
ていないドライバーを許可するために、ドライバーの署名をオフにすることができます。

2.1.3 Windows7およびWindowsVista

Windows7とWindowsVistaにも適切なドライバーが付属しています。ただし、適切なものでなければなりません。inf-
Windowsがこのドライバーを使⽤できることを確認するためのファイル ftドゥイーノ を使⽤します。

ドライバーがロードされていないことは、 ftドゥイーノ デバイスマネージャの[その他のデバイス]の下に表⽰されます。

図2.1： ftドゥイーノ Windows7では適切なドライバーなし

。inf-ファイルは下にあります https://harbaum.github.io/ftduino/ftduino/driver/ftduino.inf ⾒つけられる。

ダウンロードするとき。inf-ファイルがとして保存されていないことを確認してください。txt-ファイルが保存されます。⼀部のWindowsおよびブラウザのバー
ジョンは、ファイルのダウンロード時に⽬に⾒えない形でハングすることがよくあります。txt-で終わります。

ダウンロード後、ファイルを右クリックして、次のメニューで[インストール]を選択するだけです。

図2.2：右クリック ftduino.inf

その後、Windowsはドライバーのインストールを提案します。

必要に応じて、セキュリティクエリがあります。実際のドライバーはすでにWindows7またはWindowsVistaの⼀部であるため、この質問に⾃
信を持って同意できます。theftduino.inf-このファイルは、Windowsにそれを使⽤するように要求するだけです。

インストールが成功するとすぐに、 ftドゥイーノ いわゆる COM：-ポート統合。

https://harbaum.github.io/ftduino/ftduino/driver/ftduino.inf

24 第2章インストール

（a）確認クエリ （b）該当する場合、次のセキュリティクエリ

図2.3：ドライバーのインストール

（a）アプリケーションモード （b）ブートローダー

図2.4： ftドゥイーノ Windows7で適切なドライバーを使⽤する

の動作モードに応じて ftドゥイーノ インストールされているアプリケーションに応じて ftドゥイーノ アプリケーションモード
またはブートローダーの場合。Windowsは2つの状態を区別し、2つの異なる状態がありますCOM：-ポートも。これは意図的な
ものであり、それ以上の苛⽴ちとなるべきではありません。ほとんどの場合、ユーザーにはアプリケーションモードのみが表
⽰されます。

2.1.4 Linux

the ftドゥイーノ ⼿動による介⼊なしで、標準のLinuxPCによって認識されます。いわゆるAbstractControl Model
（ACM）を実装しているため、Linuxシステムの/の下に表⽰されます。dev / ttyACMX ここで、Xは連番です。他のACM
デバイスが接続されていない場合、ftドゥイーノ なので /dev / ttyACM0 関与。

たとえば、プラグを差し込んだ直後に詳細を確認できます。 ftドゥイーノ とともに dmesg-指⽰：

$ dmesg
。。。
[15822.397956] usb 3-1：xhci_hcdを使⽤した新しいフルスピードUSBデバイス番号9 [15822.540331]
usb 3-1：新しいUSBデバイスが⾒つかりました、idVendor = 1c40、idProduct = 0538 [15822.540334]
usb 3-1：新しいUSBデバイス⽂字列：製造元= 1、製品= 2、シリアル番号= 3 [15822.540336] usb 3-1：
製品：ftDuino
[15822.540337] usb 3-1：メーカー：Till Harbaum [15822.541084]
cdc_acm 3-1：1.0：ttyACM0：USBACMデバイス

正確なメッセージはシステムごとに異なりますが、⼀般的な内容は同等です。

は、認識されたUSBデバイスの詳細を提供します lsusb-指⽰：

$ lsusb -vd 1c40：0538
バス003デバイス009：ID 1c40：0538 EZプロトタイプ
デバイス記述⼦：

2.1。運転者 25⽇

bLength
bDescriptorType
bcdUSB
bDeviceClass
bDeviceSubClass
bDeviceProtocol
bMaxPacketSize0
idVendor
idProduct

。。。

18⽇
1

2.00
239その他のデバイス

2？
1インターフェイスアソシエーション
64

0x1c40 EZPrototypes
0x0538

これらの出⼒は、の拡張USB機能を⾒ると特に興味深いものです。 ftドゥイーノ を使⽤します。

アップロードエラーまたはデバイスまたはリソースがビジーです

Linuxがすでに実際のデバイスドライバーを持っている場合でも、システム構成を調整する必要がある場合があります。
症状は、あなたが打つことを試みるときですftドゥイーノ アクセスすると、ArduinoIDEに次のエラーメッセージが表⽰
されます。

図2.5：ModemManagerがインストールされている場合のエラーメッセージ

考えられる原因：モデムマネージャ

この場合、最も可能性の⾼い原因は ModemManager、 モデムを操作するためのプログラムがインストールされ、 ft
ドゥイーノ 接続されています。ModemManagerが使⽤を試みないようにするには ftドゥイーノ 接続するには、次のコ
マンドを⼊⼒する必要があります。

sudo wget -P /etc/udev/rules.d https://raw.githubusercontent.com/harbaum/ftduino/master/ftduino/driver/99-ftduino.rules

ファイル /etc / udev / rules.d / 99-ftduino.rules その場合、正確に次のコンテンツが含まれている必要があります。

ATTRS {idVendor} == "1c40" ATTRS {idProduct} == "0537"、ENV {ID_MM_DEVICE_IGNORE} = "1" ATTRS {idVendor} ==
"1c40" ATTRS {idProduct} == "0538"、ENV {ID_MM_DEVICE_IGNORE} = "1"、MODE = "0666"

そうして ftドゥイーノ PCから⼀時的に切断してから再度接続すると、問題なく使⽤できるようになります。

このコマンドは、/というファイルを作成しますetc / udev / rules.d / 99-ftduino.rules の上。このファイルには、Linux
カーネルが特定のイベントを処理する⽅法に関するルールが含まれています。この場合、メーカーIDのUSBデバイスを
挿⼊する場合1c40 およびデバイスの識別 0537 と 0538 これはModemManagerによって無視されます。さらに、セク
ション6.18.1で説明されているWebブラウザからのアクセスが機能するように、USBデバイスへのアクセス権がいくらか
拡張されています。

⼀部のLinuxセットアップでは、ファイルをインストールするだけでは、ModemManagerの誤動作を防ぐのに⼗分ではありま
せん。この場合、ModemManagerを⾮アクティブ化すると役⽴ちます。これは通常、問題なく省略できます。次のコマンド
は、次のシステムが起動するまで、多くの⼀般的なLinuxインストールでModemManagerを停⽌します。

sudo systemctl stop ModemManager.service

コマンドに⽬的の効果がある場合は、次のコマンドを使⽤して設定を永続的にすることができます。

sudo systemctl disable ModemManager.service

その後、ModemManagerは、システムの起動後も再起動されません。

26⽇ 第2章インストール

考えられる原因：グループメンバーシップの⽋落

Linuxでのもう1つの⼀般的なハードルは、のUSBインターフェイスへのアクセスに使⽤されるハードウェアへのアクセス権です。 ft
ドゥイーノ 必要です。

それは ftドゥイーノ Linux PCに接続すると、セクション2.1.4で説明したように、デバイスが割り当てられます。 ttyACM 割り当てられ
ました。これは例えばttyACM0 だからあなたは ls-コマンドの詳細情報：

$ ls -l / dev / ttyACM0
crw-rw ---- 1ルートダイヤルアウト166、0 Jul 27 23:06 / dev / ttyACM0

ここで重要な⾔葉 ダイヤルアウト、 これは、このインターフェイスにアクセスできるグループの名前だからです。あなたがそれに属している
かどうかはあなたにそれを伝えますグループ-指⽰：

$グループ
harbaumadmダイヤルアウトcdromsudo dip plugindev lpadmin sambashare

この場合、それは現れます ダイヤルアウト リストにあり、ユーザーは対応する権限を持っています。ダイブダイヤルアウト オンではありません。たと
えば、ユーザーは次のことができます。 ハーバウム 次のコマンドでグループに参加します。

$ sudo adduserharbaumダイヤルアウト

次に、システムからログアウトして再度ログインし、新しい権限を使⽤できるようにする必要があります。

2.2 Arduino IDE

Arduinoの統合開発環境（IDE）は、最も⼀般的なオペレーティングシステムで無料で利⽤できます。 https://
www.arduino.cc/en/Main/Software。独⾃のインストーラーを備えたWindowsバージョンは、たとえば、リンクのすぐ下にあ
りますhttps://www.arduino.cc/download_handler.php 利⽤可能。このArduinoIDEが最初にインストールされます。

2.2.1UbuntuソフトウェアストアのLinux⽤ArduinoIDE

Linuxでは、IDEをからダウンロードする必要があります http://arduino.cc 多くの場合、対応するLinuxディストリ
ビューションのリポジトリまたはストアからIDEを直接取得する可能性もあります。理論的には、これにはインストール
が迅速かつ簡単であるという利点があります。たとえば、Ubuntuストアは図2.6に⽰すバージョンを提供しています。写
真の右上にある星が3つしかないというユーザー評価には、正当な理由があります。

このバージョンのArduinoIDEは、いわゆるSNAP形式に基づく⽐較的新しいパッケージ管理に基づいて構築されました。
SNAPの新機能は、プログラムの権利がスマートフォンアプリから知っているのと同じ⽅法で管理されることです。これ
で、ArduinoIDEはUSBポートにアクセスする必要があります。ftドゥイーノ 接続されています。Ubuntu Linuxは現在、
そのような権利の付与をサポートしていません（2019年7⽉28⽇現在）。したがって、Arduino IDEはストアからインス
トールできますが、ftドゥイーノ （および他のArduinoと同様に）は不可能です。この問題には2つの解決策がありま
す。

1.ストアのプログラムは、グラフィックインターフェイスではなく、コマンドラインに次のように⼊⼒してインストールさ
れます。 スナップインストール--devmodearduino-mhall119。 詳細については、たとえば、 1。

2.アーカイブからArduinoIDEをインストールします https://www.arduino.cc/en/main/software

どちらの場合も、セクション2.1.4で説明されているようにUbuntuでの権限を調整し、セクション2.1.4で説明されているようにモデムマネー
ジャーをアンインストールする必要があります。

2.2.2ボード管理者によるインストール

に ftドゥイーノ Arduino IDEで使⽤できるようにするには、対応する構成を⾏う必要があります。Arduino IDEを使⽤す
ると、このプロセスを⼤幅に⾃動化できます。

1Arduino IDE⽤のアナウンススナップパッケージ： https://groups.google.com/a/arduino.cc/forum/#!topic/developers/Qp-G910Mt9c

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/download_handler.php
http://arduino.cc
https://www.arduino.cc/en/main/software
https://groups.google.com/a/arduino.cc/forum/#!topic/developers/Qp-G910Mt9c

2.2。Arduino IDE 27

図2.6：UbuntuソフトウェアストアのArduinoIDEには落とし⽳があります

追加のボードを簡単にインストールするために、ArduinoIDEにはいわゆるボードマネージャーが付属しています。まず、ボー
ド管理者は、Arduinoの設定で通知を受ける必要があります。ftドゥイーノ-構成を⾒つけることができます。

あなたはそれを着ます https://harbaum.github.io/ftduino/package_ftduino_index.json 次のように設定で。対応する⾏を⼊⼒すると
きは、URLにアンダースコア（_）が含まれていることを確認してください。アンダースコアは、このPDFドキュメントからURLをコ
ピー（コピーアンドペースト）すると失われる可能性があります。この場合、URLは⼿動で⼊⼒する必要があります。

図2.7：のURL ftドゥイーノ-Arduinoプリファレンスの構成

実際のボードマネージャーには、IDEメニューから直接アクセスできます。
。

ツール 。ボード： ... 。
取締役会管理者..。

後に JSONファイルが設定に⼊⼒されている場合、ボード管理者は⾃動的に ftドゥイーノ-構成。

https://harbaum.github.io/ftduino/package_ftduino_index.json

28 第2章インストール

図2.8：ボードマネージャーはメニューから開始されます

図2.9：これはボードマネージャーで実⾏できます ftドゥイーノ設置するボード

をクリックして インストールするには... すべてのためになります ftドゥイーノ 必要なファイルが⾃動的にダウンロードおよびインストールされます。

インストールが正常に完了すると、 ftドゥイーノ ボードの中から選択できます。

図2.10：選択 ftドゥイーノボード

注意： 新しいインストールでは、ボードftDuinoとftDuino（WebUSB）のどちらかを選択できます。通常の作業では、
ftDuino設定を選択してください。設定ftDuino（WebUSB）は、セクション6.18で説明されている特別なWebUSBス
ケッチを対象としています。この設定は、WebUSBスケッチを実際にロードする場合にのみ使⽤してください。

すでに ftドゥイーノ 接続され、必要なドライバがインストールされている、 ftドゥイーノ 下を選択します。 ポート

これでインストールは完了です。⼀部のサンプルプログラムは、インストール中にすでにインストールされています。この
下のメニューにあります 。ファイル。例 。ftDuinoの例

これらの例を直接ロードして、 ftドゥイーノ ダウンロードする。

2.2.3アップデート

Arduino IDEは、ソフトウェアアップデートを⾃動的に通知します。 ftドゥイーノ-構成。少しの努⼒で、常に最新の状態
に保つことができます。

2.2。Arduino IDE 29

図2.11：MacOSでのポートの選択

図2.12：の例 ftドゥイーノ-ボード

第3章

最初のステップ

この章では、 ftドゥイーノ ArduinoIDEを収集します。前提条件は、ftドゥイーノ PC上の適切なドライバーによってサ
ポートされており、Arduino IDEが第2章で説明されているようにインストールされていること、および ftドゥイーノsが
⽤意されています。

に加えて ftドゥイーノ たとえば、Schertechnik TXやTXTでも使⽤されているように、標準のミニUSBケーブルが必要で
す。

3.1最初のスケッチ

最初の試みでは ftドゥイーノ 個別の電源はありません。PCからUSB経由で供給されれば⼗分です。schertechnikの⼊⼒
と出⼒は当分の間未使⽤のままです。

まず、ArduinoIDEに次のスケッチを直接⼊⼒できます。この例は、既成の例としてで⾒つけることができるため、必ず
しも⼿動で⼊⼒する必要はありません。 -下のArduinoIDEのメニュー

。
ファイル

ファイル。例 。FtduinoSimple 。点滅

図3.1： ftドゥイーノ-ArduinoIDEの例

プレインストールされているすべてのサンプルをワンクリックでロードでき、選択したサンプルで新しいウィンドウが
開きます。

1
2
3
4位
5
6⽇
7⽇
8⽇
9

/ *
点滅

ftDuinoの内部の⾚いLEDを1秒間オンにし、1秒間オフにして、これを際限なく繰り返しま
す。

元の：
http：//www.arduino.cc/en/Tutorial/Blink

* /

3.1。最初のスケッチ 31

10
11⽇
12⽇
13⽇
14⽇
15⽇
16
17⽇
18⽇
19⽇
20⽇
21
22⽇
23
24

//セットアップ関数は起動時に1回呼び出されます 空所 設定（）{

//内部LEDが接続されているピンを出⼒として設定します pinMode（（LED_BUILTIN 、 出⼒）;

}

//ループ関数が何度も呼び出されます 空所 ループ（）{

digitalWrite（（LED_BUILTIN 、 ⾼い）; 遅れ
（1000）;
digitalWrite（（LED_BUILTIN 、 低い）;

// LEDをオンにします（HIGHは⾼電圧レベルです）// 1000ミリ秒（1秒）待ちます

//電圧を//低レベル（LOW）に切り替えてLEDをオフにします// 1秒待
ちます

遅れ （1000）;
}

3.1.1まばたきスケッチをにダウンロードします ftドゥイーノ

まばたきスケッチが開いているはずです。theftドゥイーノ PCに接続し、メニューの下にある必要があります
the ftドゥイーノ 選択されたものと正しいもの COM：-下のポート 選択されます。

ツール 。
ボード ツール 。ポート

図3.2：WindowsでのArduinoIDEのポートの選択

Arduino IDEは、ステータスバーの右下にもこれを表⽰します。

（a）Linux （b）ウィンドウ

図3.3：選択された ftドゥイーノ ステータスバーに表⽰されます

上のスケッチのダウンロード ftドゥイーノ 左上のArduinoIDEのダウンロード⽮印ボタンをクリックするだけです。

図3.4：ArduinoIDEのダウンロードボタン

IDEは、最初にスケッチをマシンコードに変換します。変換が成功した場合、マシンコードはに転送されますftドゥイー
ノ フラッシュメモリに保存されます。

ダウンロード中、内部の⾚いLED ftドゥイーノ セクション1.2.4で説明されているように、ブートローダーがアクティブ
化され、ダウンロードが実⾏されます。

ダウンロードが成功すると、スケッチがすぐに開始され、内部の⾚いLEDがゆっくり点滅します。

https://www.onlinedoctranslator.com/ja/?utm_source=onlinedoctranslator&utm_medium=pdf&utm_campaign=attribution

32 第3章はじめに

リセット

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

O4

O6

I²C

+ 9V + 9V

図3.5：内部の⾚いLEDの点滅 ftドゥイーノ

3.1.2スケッチのしくみ

スケッチコードは、説明コメントの⼤部分で構成されています。これは、スケッチの機能にとってはまったく重要では
なく、⼈間の読者の理解に役⽴つだけです。コメント⾏は⼆重スラッシュ（//）で始まります。複数⾏コメントは/ *およ
び* /で囲まれています。このドキュメントとArduinoIDEでは、コメントは明るい灰⾊で簡単に認識できます。実際の
コードは12〜15⾏⽬と18 〜24⾏⽬のみです。

3.1.3機能 設定（） と ループ（）

すべてのArduinoスケッチには、少なくとも2つの機能が含まれています 設定（） （施設の英語）および ループ（）（
英語のforループ）。実際の⾓かっこ（{および}）はセミコロンで区切られ、ftドゥイーノ 実⾏するコマンド。関数内のコ
マンド設定（） スケッチ開始時に1回実⾏されます。これらは通常、初期設定を⾏うため、または⼊⼒と出⼒をパラメー
ター化するために使⽤されます。のコマンドループ（）-⼀⽅、機能は、 ftドゥイーノ スイッチがオンのままになるか、
再プログラムされるまで。これは実際のスケッチ機能が⾏われる場所であり、センサーが反応し、アクチュエーターが
制御されます。

それも 点滅例は次のように機能します。の中に設定（）-の⾚⾊発光ダイオードに接続された内部接続 ftドゥイーノ 出⼝
を宣⾔しました。

の中に ループ（）-機能、⾚⾊LEDの内部接続がライン19でオンになっています（電圧レベルが⾼い、 ⾼い） 21⾏⽬で
はオフになっています（電圧レベルが低い、 低い）。 その間、20⾏⽬と23⾏⽬は1000ミリ秒または1秒待機します。発
光ダイオードがオンになり、1秒間待機し、オフになり、さらに1秒間待機します。これは何度も繰り返されるため、発
光ダイオードは0.5ヘルツの周波数で点滅します。

3.1.4スケッチの調整

開始するには、多くの場合、既製のスケッチから始めて、独⾃の変更を加えることが理にかなっています。Arduino IDE
の例は、PCのすべてのユーザーが利⽤できるため、最初は変更できません。サンプルスケッチに変更を加えて保存しよ
うとすると、ArduinoIDEは独⾃のコピーを作成する必要があることを通知します。これを⾏うには、Arduino IDEでファ
イルダイアログが開き、保存する前にスケッチの名前を変更するオプションがあります。FastBlink。

図3.6：ArduinoIDEはあなた⾃⾝のコピーを保存するように促します

3.2。schertechnikコンポーネントの制御 33

この⽅法で独⾃のコピーを作成したら、必要に応じて変更できます。⾃分のコピーは、ArduinoIDEのメニューの下にあ
ります 挿⼊され、後でいつでもそこからリロードできます。ファイル。スケッチブック

図3.7：コピー FastBlink ArduinoIDEのスケッチブックで

たとえば、スケッチでは、20⾏⽬と23⾏⽬の1000ミリ秒をそれぞれ500ミリ秒に変換できるようになりました。

18⽇
19⽇
20⽇
21
22⽇
23
24

空所 ループ（）{
digitalWrite（（LED_BUILTIN 、 ⾼い）; 遅れ
（500）;
digitalWrite（（LED_BUILTIN 、 低い）;

// LEDをオンにします（HIGHは⾼電圧レベルです）// 500ミリ秒（0.5秒）待ちます

//電圧を//低レベル（LOW）に切り替えてLEDをオフにします//0.5秒
待ちます

遅れ （500）;
}

ダウンロードが成功すると、LEDが0.5秒間オンとオフに切り替わり、点滅周波数が2倍の1ヘルツになります。

3.2schertechnikコンポーネントの制御

の内部発光ダイオードを使⽤するには ftドゥイーノ 点滅はありません ftドゥイーノ 必要です。すべてのArduinoにはそ
のような内部発光ダイオードがあり、最初の例に使⽤できたはずです。

彼は彼の特別なスキルを果たしています ftドゥイーノ 通常のせん断技術センサーとアクチュエーターを扱うことになると。したがっ
て、まばたきのスケッチは、発光ダイオードに加えて、出⼒に1つあるように拡張する必要があります。O1 接続されているランプが点
滅します。

通常のSchertechnikランプはプラグで出⼒に接続されています O1 の ftドゥイーノ そして、2番⽬のプラグをのアース接
続の1つに接続します ftドゥイーノ。アース接続は、図3.8にアース記号が付いた12の接続です。⊥ 接続されている。

9ボルトで動作するSchertechnik出⼒を使⽤する必要があるため、 ftドゥイーノ 9ボルトで供給することもできます。これは、
たとえば、標準のSchertechnikパワーパックまたはバッテリーホルダーを使⽤して⾏うことができます。両⽅の接続は極性の
反転から保護されているため、特にバッテリーを接続するときに損傷を与えることはありません。

3.2.1スケッチ

次のスケッチ例 BlinkO1 でも⾒つけることができます
。

ファイル-下のArduinoIDEのメニュー ファイル。例 。
FtduinoSimple 。BlinkO1

1
2
3
4位
5
6⽇

//
//
//出⼒O1でのラモーの点滅//

//（c）2018 by Till Harbaum < till@harbaum.org >

BlinkO1.ino

34 第3章はじめに

リセット

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

O4

O6

I²C

+ 9V + 9V

図3.8：schertechnikランプの点滅 ftドゥイーノ

7⽇
8⽇
9

10
11⽇
12⽇
13⽇
14⽇
15⽇
16
17⽇
18⽇
19⽇
20⽇
21
22⽇
23
24
25⽇
26⽇

＃ 含む <FtduinoSimple.h>

空所
//
pinMode（（LED_BUILTIN 、

設定（）{
LEDを初期化します

出⼒）;
}

空所 ループ（）{
//内部LEDをオンにして、O1（HIGHまたはHI）を出⼒します digitalWrite（（LED_BUILTIN 、
⾼い）; ftduino。output_set（（Ftduino ：：：O1 、

Ftduino ：：：こんにちは）;

遅れ （1000）; // 1000ミリ秒（1秒）待つ

//内部LEDと出⼒O1（LOWまたはLO）をオフにします digitalWrite（（LED_BUILTIN 、 低い
）; ftduino。output_set（（Ftduino ：：：O1 、

Ftduino ：：：LO）;

遅れ （1000）; // ⼀瞬待って
}

スケッチは、いくつかの詳細だけが元のまばたきスケッチと異なります。7⾏⽬、17⾏⽬、23⾏⽬が追加されました。7
⾏⽬には、ftドゥイーノ が供給され、の⼊⼒と出⼒へのアクセス ftドゥイーノ 簡略化。17⾏⽬と23⾏⽬で出⼒O1 オン
（こんにちは） またはスイッチをオフにしました（LO）。 このライブラリの詳細については、第9章を参照してくださ
い。

内部発光ダイオードのオンとオフを切り替えるコマンドは引き続き使⽤できるため、内部発光ダイオードは外部接続さ
れたランプと並列に点滅します。

独⾃のスケッチで⼊⼒と出⼒を使⽤するためのさらに簡単な例と説明は、セクション9.1.1にあります。

3.2.2⼊⼒

The ftドゥイーノ 8つの⼊り⼝から I1 それまで I8 およびカウンター⼊⼒ C1 それまで C4。

これらの⼊⼒には、セクション9に⽰すように適切なライブラリを介してアクセスします。関してFtduinoSimple- ボタ
ンの切り替えステータスは、ライブラリで照会できます。

1 ＃ 含む <FtduinoSimple.h>

3.3。PCとの通信 35

リセット

3 I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

1
2 O4

O6

I²C

+ 9V + 9V

図3.9：⼊⼒のボタン I1 の ftドゥイーノ

2
3
4位
5
6⽇
7⽇
8⽇
9

10
11⽇
12⽇

空所 設定（）{
//初期化は必要ありません

}

空所 ループ（）{
//⼊⼒I1のキーの状態を読み取ります もしも（（ftduino。
input_get（（Ftduino ：：：I1））{

/ * ...何かをする... * /
}

}

電圧や抵抗などのアナログ値を読み取るために、 Ftduinoライブラリが必要です。それらを使⽤する場合、抵抗値を読み
取る前に、最初に⼊⼒測定モードを設定する必要があります：

1
2
3
4位
5
6⽇
7⽇
8⽇
9

10
11⽇
12⽇
13⽇
14⽇
15⽇

＃ 含む <Ftduino.h>

空所 設定（）{
// Ftduinoライブラリの初期化 ftduino。初期化（）;

//抵抗測定⽤に⼊⼒I1を準備します ftduino。input_set_mode（（Ftduino ：：：I1
、 Ftduino ：：： 抵抗）;

}

空所 ループ（）{
//⼊⼒I1での抵抗の評価 uint16_t抵抗 = ftduino。input_get（（Ftduino ：：：
I1）; / * ...何かをする... * /

}

第6章の実験では、さまざまな例があります。 ftドゥイーノ セクション6.7の温度センサーなどの特別なセンサーを含め
て評価されます。

3.3PCとの通信

the ftドゥイーノ 主にモデルを⾃律的に制御することを⽬的としており、操作中にPCの助けに頼る必要はありません。
それでも、操作中にPCとのデータ交換が望ましい場合があるのには理由があります。

特にスケッチの開発とトラブルシューティングの際に、たとえば、特定の値をPCに表⽰できる場合や、エラーメッセー
ジをプレーンテキストでPCに送信できる場合は、多くの場合、⾮常に役⽴ちます。ただし、測定値をPCに出⼒して、さ
らに評価したり保存したりすることは、多くの場合役⽴ちます。

スケッチはこれを⾏うことができます COM：-間のポート ftドゥイーノ データ交換にはPCを使⽤します。theftドゥイーノ-サンプルス
ケッチ ComPort たとえば、 COM：-PC上でいくつかの簡単なテキスト出⼒を⽣成するためのポート。TheComPort

36 第3章はじめに

例はで⾒つけることができます

また、 ComPortSketchは出⼒を使⽤しないため、USB接続以外の電源は必要ありません。
ファイル-下のArduinoIDEのメニュー ファイル。例 。FtduinoSimple 。USB。ComPort 。

1
2
3
4位
5
6⽇
7⽇
8⽇
9

10
11⽇
12⽇
13⽇
14⽇
15⽇
16
17⽇
18⽇
19⽇
20⽇
21
22⽇
23

/ *
ComPort-COM：ポートを介したPCとの通信

* /

int カウンター = 0;

空所 設定（）{
//ポートを初期化し、USB接続を待ちます シリアル。始める （9600）; その間
（！ シリアル）;

// USB接続を待ちます

シリアル。println（（"ftDuino COM：ポート テスト"）;
}

空所 ループ（）{
シリアル。印刷（（"カウンター： "）; シリアル。
println（（カウンター 、 12⽉）;

//「counter：」を出⼒します
//カウンタを10進数として出⼒します

カウンター = カウンター +1; // 1ずつカウントアップ

// 1秒待つ（1000ミリ秒）遅れ （1000）;
}

3.3.1シリアルモニター

PC上のいわゆるターミナルプログラムを使⽤して、 ftドゥイーノ 経由 COM：-受信するポート。Arduino IDEは、このよ
うな端末を便利に備えています。メニューにあります

。ツール 。シリアルモニター

図3.10：シリアルモニターは ツール -メニュー

必ず COM：-ポートを個別に設定しないでください。 COM：-スケッチダウンロード⽤に設定済みのポートを採⽤してい
ます。

メニューで選択すると、シリアルモニターはPC上に独⾃の追加ウィンドウを開きます。になったComPort すでにスケッ
チ ftドゥイーノ ロードされると、対応する出⼒がシリアルモニターが開かれるとすぐに表⽰されます。

⾏末

シリアルモニターには、ウィンドウの下部に⾏の終わりを⽰すための⽬⽴たないオプションがあります。このオプションは、
ftDuinoからPCへの単純なテキスト出⼒には意味がありません。しかし、PCからの⼊⼒が期待されるとすぐに

3.3。PCとの通信 37

図3.11：シリアルモニター

たとえば、セクション7.1のハイベイ倉庫のモデルでは、このオプションは重要です。オプションがオンになっている必要があります
また コマンド⼊⼒が機能するように⽴ってください。改⾏ 改⾏（CR）

図3.12：⾏末の設定

の使⽤ COM：-ポートは、SketchDownloadとシリアルモニターの間で⾃動的に共有されます。シリアルモニターを開い
た状態で、スケッチエディタを前⾯に表⽰し、いつでもダウンロードを開始できます。その後、ダウンロード中、シリ
アルモニターは⾃動的に⾮アクティブ化されます。

USBの特徴COM：-ポート ftドゥイーノ Arduino Leonardoから継承されたのは、いわゆるビットレート（ボーレートと
も呼ばれる）には意味がないということです。の中にComPortたとえば、10⾏⽬では9600ビット/秒のビットレートが設
定されていますが、図3.11では右下に115200ビット/秒のビットレートが設定されています。USB接続はこれらの設定を
無視し、エラーなしで通信します。ただし、Arduino Unoなど、Arduinoファミリーの他のメンバーには、ここで同じ設
定が必要です。

3.3.2スケッチの説明

スケッチは、操作するための実際の呼び出しにすぎません。 COM：-ポート。以来COM：-ポートもしばしばシリアル
ポート、シリアルと呼ばれる英語はすべて対応する関数呼び出しをキャッチします シリアル。 の上。

10⾏⽬では、スケッチの開始時にすぐに呼び出されたもの 設定（）-機能は最初は COM：-通信⽤にポートが開いていま
す。次に、11⾏⽬はCOM：-ポートはPC側で利⽤可能であり、最初の通信を⾏うことができます。次に、最初の開始メッ
セージが13⾏⽬でPCに送信されます。

繰り返しトラバースされた中で ループ（）-関数、テキストCounter：が17⾏⽬と18 ⾏⽬に出⼒され、その後に変数の
内容が続きます カウンター 10進表記で。theprintln（）-関数は、出⼒後に改⾏を実⾏します。したがって、次の出⼒は
画⾯の次の⾏の先頭にあります。

最後に20⾏⽬で カウンター-変数が1つ増え、1秒（1000ミリ秒）待機しました。

3.3.3USB接続の確⽴

Arduino UnoなどのUSB通信⽤に別のUSB通信モジュールを使⽤するデバイスの場合、デバイスがPCに接続されるとす
ぐにUSB接続が継続されます。でftドゥイーノ Arduino Leonardoと同様に、マイクロコントローラーはUSB通信⾃体の
重要な側⾯を引き継ぎます。つまり、新しいスケッチがマイクロコントローラーに転送されるたびに、論理USB接続が
切断されて再確⽴されます。

38 第3章はじめに

しますか ftドゥイーノ ダウンロード直後にテキスト出⼒が表⽰されます COM：-ポート、USB接続がまだ再確⽴されてい
ないため、最初のメッセージは失われます。したがって、11⾏⽬のスケッチは、ftドゥイーノ そして最初の費⽤が発⽣
する前に再びPC。

この⾏は、テストとして削除またはコメントアウトできます（//でコメントに変換されたプログラムコードは実⾏されま
せん）。

8⽇
9

10
11⽇
12⽇
13⽇
14⽇

空所 設定（）{
//ポートを初期化し、USB接続を待ちます シリアル。始める （9600）;

while（！シリアル）;// // USB接続を待ちます

シリアル。println（（"ftDuino COM：ポートテスト "）;
}

このスケッチをにロードする場合 ftドゥイーノ、シリアルモニターに出⼒されるテキストは、その⾏からのみ開始されま
す カウンター：2。 前の2⾏は⽇付が付けられています ftドゥイーノ USB接続が再度確⽴される前にPCに送信されるた
め、失われます。USB経由の出⼒が追加で⾏われるだけで、ftドゥイーノ PCが接続されていなくても動作するはずで
す。

第4章

プログラミング

この章では、独⾃のプログラムまたはスケッチをプログラムする⽅法について説明します。 ftドゥイーノ。最初は独⾃の
プログラムを作成したくなく、プログラムコードを理解せずに既成の例や実験を実⾏したい場合は、第6章に直接進んで
ください。

the ftドゥイーノ 常に増え続ける既製のサンプルスケッチが付属しています。したがって、多くのモデルや実験では、前
の章で説明したようにこれらの例を使⽤するだけで⼗分です。ftドゥイーノ ロードする。しかし、せん断技術を使⽤して
構築する楽しみが、構築⼿順の所定のパスを残したところから始まるのと同じように、ftドゥイーノ 本当の利点は、独⾃
のスケッチでプログラムできることです。⾃⼰設計モデルと⼀緒に、印象的な可能性があります。ちなみに、あなたは
機械の基礎を知るだけでなく、マイクロコントローラープログラミングの世界への現実的な洞察を得ることができま
す。

この章は、プログラミングの最初の洞察を提供することを⽬的としています。 ftドゥイーノ 与える。の基本的な⾔語構
成ftドゥイーノ 使⽤されるプログラミング⾔語は、次の章でプログラムを理解するために必要な範囲で説明されていま
す。説明は意図的に最⼩限に制限されています。それにもかかわらず、このかなり短い章の終わりまでに、あなたの最
初の⾃分のスケッチに必要なすべての基本が利⽤可能になります。

4.1テキストベースのプログラミング

建設玩具の世界のほとんどのプログラミング環境とは対照的に、Arduinoはグラフィカルではなくテキストベースでプロ
グラミングされています。SchertechnikのRoboProやLegosEV3プログラミングアプリなどのグラフィック環境は簡単に
習得できるように設計されていますが、ArduinoIDEは実⽤的な関連性に重点を置いています。Arduinoのプログラミン
グとは、プロの商⽤製品開発者が⾏うのと同じ⽅法でプログラムを作成することを意味します。

（a）gra sch （b）テキストベース

図4.1：出⼒O1でのランプの点滅

40 第4章プログラミング

実際、テキスト表現にはいくつかの重要な利点があります。したがって、特に⼤規模なプロジェクトの場合、適切にフォーマットされ
たテキスト表現は、グラフィックよりもはるかに理解しやすくなります。

（a）ArduinoIDEで （b）Githubで

図4.2：同じArduinoスケッチの表現

テキストベースのプログラムは、プレーンテキストで構成されています。それにもかかわらず、Arduino IDEなどの⼀部のプロ
グラミング環境では、⾊付きの強調表⽰や異なるフォントサイズを使⽤したり、プログラムテキストに⾏番号を表⽰したりで
きます。ワードプロセッサからのテキストとは対照的に、このフォーマットは作成されたプログラムの⼀部ではありません。
代わりに、それらはプログラミング環境⾃体の⼀部であり、たとえばプログラムコードが渡されるとフォーマットは失われま
す。したがって、同じプログラムコードは、異なる環境では完全に異なって⾒える可能性があります。これは、プログラムの
機能には関係ありません。プログラムテキストがどのように表⽰されるかは関係ありません。実際のプログラム機能は、表⽰
されるテキストの外観ではなく、表⽰されるテキストの内容に単独で責任を負います。

図4.2に⽰されているように、Arduino IDEと、たとえばWebサービスGithubとの間の同⼀のプログラムコードの表現は
⼤きく異なります。

このマニュアルも独⾃の表現を使⽤しており、たとえば⾏番号が⽰されている場合があります。これらの⾏番号は、
個々の⾏を参照しやすくするためにのみ使⽤され、プログラムの⼀部として明⽰的に⼊⼒しないでください。

1
2
3
4位
5
6⽇
7⽇
8⽇
9

10
11⽇
12⽇
13⽇
14⽇
15⽇
16
17⽇
18⽇
19⽇
20⽇
21
22⽇
23
24
25⽇
26⽇

//
//
//出⼒O1でのランプの点滅//

//（c）2018 by Till Harbaum < till@harbaum.org >

BlinkO1.ino

＃ 含む <FtduinoSimple.h>

空所
//
pinMode（（LED_BUILTIN 、

設定（）{
LEDを初期化します

出⼒）;
}

空所 ループ（）{
//内部LEDをオンにして、O1（HIGHまたはHI）を出⼒します digitalWrite（（LED_BUILTIN 、
⾼い）; ftduino。output_set（（Ftduino ：：：O1 、

Ftduino ：：：こんにちは）;

遅れ （1000）; // 1000ミリ秒（1秒）待つ

//内部LEDと出⼒O1（LOWまたはLO）をオフにします digitalWrite（（LED_BUILTIN 、 低い
）; ftduino。output_set（（Ftduino ：：：O1 、

Ftduino ：：：LO）;

遅れ （1000）; // ⼀瞬待って
}

4.2。プログラミング⾔語C++ 41

Arduino IDEにも⾏番号を表⽰したい場合は、図4.3に⽰すように、ArduinoIDEのデフォルト設定で⾏番号をアクティブ
にすることができます。

図4.3：ArduinoIDEでの⾏番号のアクティブ化

4.2プログラミング⾔語C++

Arduinosと ftドゥイーノ プログラミング⾔語C++、より正確には標準C++11プログラム。Arduinoスケッチは、いくつか
の基本的な点で従来のCとは異なります++-プログラムは、それを除けば、プログラミングは標準に対応しています。プロ
グラミング⾔語C++ プロのソフトウェア開発で広く使⽤されています。Windows、Linux、MacOSなどのすべての⼀般的
なオペレーティングシステムの⼤部分はC⾔語です++ またはCに密接に関連するもの++ 関連するプログラミング⾔語。
Arduinoプログラミングは、専⾨分野への現実的な洞察を提供します。

Cと呼ばれるスケッチ++-Arduinoの世界のプログラムは、Arduinoのマイクロコントローラーが応答するコンパイラーと呼ばれ
るプログラムによって、いわゆるマシンまたはバイナリコードに変換されます。 ftドゥイーノ 理解されています。このバイナ
リコードは、ftドゥイーノ ダウンロードで転送できます。

ArduinoIDEで使⽤されるコンパイラはいわゆるGCCです1。このコンパイラは業界でも使⽤されており、特に、すべての
Androidスマートフォンで使⽤されているLinuxカーネルを変換するために使⽤されます。Arduino IDEとその内部で使⽤
されるツールは、決して純粋な趣味のテクノロジーではありません。それどころか、初⼼者に適した表⾯は、強⼒でプ
ロフェッショナルなコンポーネントを隠します。

4.3基本

Arduinoスケッチはテキストによる説明で構成されています。有効なスケッチを形成する最⼩限のテキストは次のように
なります。

空所 設定 （）{
}

空所 ループ（）{
}

1GNUコンパイラコレクションGCC： https://gcc.gnu.org/

https://gcc.gnu.org/

42 第4章プログラミング

このスケッチを⼊⼒するには、最初にArduino IDEを開き、メニューで選択します
上記の⾏がすでに正確に含まれている新しいウィンドウ。//で始まる2⾏もあります。これらを削除して、最後のテキス
トが上記の例に正確に対応するようにすることができます。

ファイル。新しい。開く

（a）翻訳 （b）ダウンロード

図4.4：ArduinoIDEボタン

この最⼩限のスケッチは、Arduino IDEで正常に翻訳され、 ftドゥイーノ ロード。この⽬的のために、ArduinoIDEには
図4.4に⽰す2つのボタンがあります。サーフェスはマシンコードへの変換を開始します。この機能は接続する必要はあ
りませんftドゥイーノ また、スケッチに翻訳を妨げる基本的なエラーが含まれていないかどうかをすばやく判断するため
に使⽤できます。2番⽬のボタンは、へのダウンロードを開始しますftドゥイーノ。スケッチがまだ翻訳されていない場
合は、ダウンロードボタンをクリックすると⾃動的に翻訳が開始されます。この翻訳が成功した場合にのみ、ダウン
ロードが開始されます。

経由でスケッチを持っていましたか 新しく作成されたArduinoIDEは、スケッチを使⽤できるかどうかを尋ねる場合があります
保存したい。保存することに同意した場合は、後でいつでもスケッチの作業を続けることができます。

ファイル。新しい

ダウンロードが成功した後、 ftドゥイーノ ⽬に⾒える反応は⾒られません。スケッチは、2つのいわゆる関数で構成され
ています。設定（） と名前の1つ ループ（）。 これらの関数は、すべてのArduinoスケッチのスケルトンを形成しま
す。それぞれに、スケッチの実際の機能を説明する中括弧{および}のペアに埋め込まれた命令が含まれています。連続す
るステートメントはセミコロン（;）で区切られます。

ただし、この単純な例のように、括弧の間に指⽰がまったくない場合、スケッチは結果として、認識可能な反応をトリ
ガーしません。 ftドゥイーノ アウト。

4.3.1コメント

//で始まる最初に削除された2つの線も、スケッチに機能を追加しません。もう⼀度確認できます
今回はスケッチを変更せずに残します。ファイル。新しい

空所 設定（）{
//セットアップコードをここに配置して、1回実⾏します。

}

空所 ループ（）{
//メインコードをここに配置して、繰り返し実⾏します。

}

ダウンロードボタンをもう⼀度クリックすると、このスケッチが翻訳され、 ftドゥイーノ ロード。再び⾏われますftドゥ
イーノ 認識できる機能はありません。これは、追加の2⾏が純粋なコメント⾏であるためです。それらは、⼈間の読者に
追加の説明を提供することを⽬的としています。これらの⾏は、マシンコードへの変換には意味がありません。マシン
コードが⽣成されるときに、⼆重スラッシュ//の後に⼀列に並んでいるものはすべて無視されます。

/ *および* /にコメントを含めることもできます。マシンコードの⽣成は、要素を閉じる* /の後でのみ再開されます。さ
らに、この種のコメントは数⾏にまたがることがあります。

空所
/ *

設定（）{
複数⾏コメント
可能です* /

}

4.3。基本 43

Arduino IDEの配⾊は、コメントのヒントを提供します。コメントは常に薄い灰⾊で表⽰されるため、実際のプログラム
コードと簡単に区別できます。

4.3.2エラーメッセージ

次に、2つのプログラムステートメントを中括弧の間に配置する必要があります。 設定（）-挿⼊する関数：

1
2
3
4位
5
6⽇
7⽇

空所 設定（）{
pinnMode（（LED_BUILTIN 、 出⼒）;
digitalWrite（（LED_BUILTIN 、 ⾼い）;

}

空所 ループ（）{
}

これらの2つの不可解な⾏が正確に何を意味するかについては、後で説明します。まず第⼀に、スケッチは再度翻訳され、に転送されるだけで
す。ftドゥイーノ 課⾦されます。プログラムをエラーなしでコンパイルできる場合は、次のように更新されます。ftドゥイーノ 移⾏。

残念ながら、この場合、エラーが発⽣することはありません。プログラムが⽰されているとおりに⼊⼒された場合、プ
ログラムのコンパイルは図4.5に⽰されているエラーメッセージで中⽌されます。

図4.5：変換エラーの表⽰

画⾯の上部で、エラーのあるコード⾏が強調表⽰されます。GCCコンパイラの出⼒は、ウィンドウの下部に表⽰されま
す。実際のエラーメッセージは 'pinnMode 'はこのスコープで宣⾔されていません。

これにより、コンパイラは、⽤語で始まったことを通知します pinnMode 何もできない。スケッチに⼊ると、この問題
の兆候がありました。pinnMode たとえば、2⾏⽬の単語がIDEに⼊⼒されたときにのみ黒で表⽰されました digitalWrite
オレンジ⾊で強調表⽰されます。Arduino IDEは、認識しているほとんどの命令に⾊を付けており、⾊の付いていない部
分はエラーを⽰している可能性があります。

実際、ここに間違いが忍び込んで起こった pinnMode それを持っているだろう pinMode 呼び出す必要があります。それ
に応じて単語を変更すると、IDEは予想どおりオレンジ⾊になり、翻訳は成功し、ダウンロードが可能になります。修正
されたスケッチは次のようになります。

1
2
3
4位
5
6⽇
7⽇

空所 設定（）{
pinMode（（LED_BUILTIN 、 出⼒）;
digitalWrite（（LED_BUILTIN 、 ⾼い）;

}

空所 ループ（）{
}

44 第4章プログラミング

ダウンロード後、 ftドゥイーノ 輝く、それはまさに2つの不可解な線が⾏うことであり、これについては次のセクション
で詳しく説明します。

4.3.3機能

最も重要なC++-⾔語要素は、いわゆる関数です。それらは、意味のある単純なプログラムスケッチを書くために使⽤でき
ます。

関数定義は命令を要約します。次のプログラムフラグメントは、と呼ばれる関数の定義を⽰しています。姓、 機能本体
の2つの指⽰ 命令1 と 命令2 が含まれています。指⽰の後にセミコロンが続きます。互いに分離しました。

空所 姓（）{
命令1;
命令2;

}

関数は通常、複雑なタスクに必要なすべての命令を要約し、それに適切な名前を付けるために使⽤されます。関数本体
のステートメントは、上から下に次々に実⾏されます。したがって、この場合のみ命令1 実⾏されてから 命令2。

個々の命令の実⾏には数マイクロ秒しかかからないため、その複雑さにもよりますが、同時に起こっているという印象
を与えることがよくあります。実際、すべての命令は順番に実⾏されます。したがって、⽭盾する指⽰も互いに⽭盾す
る可能性があり、例えば、ランプをオンにしてからすぐに再びオフにすることができる。これらのイベントは次々に発
⽣するため、ユーザーは、たとえば、発光ダイオードが数マイクロ秒オンになったことを確認できません。

命令の実⾏は直接的な影響を与える可能性があり、たとえば、発光ダイオードは ftドゥイーノ 点灯させてください。た
とえば、発光ダイオードをオンにするためのすべての命令を要約する関数は、次のようになります。

空所 LEDをオンにします （）{
pinMode（（LED_BUILTIN 、 出⼒）;
digitalWrite（（LED_BUILTIN 、 ⾼い）;

//ピンを出⼒に切り替えます//出⼒ピンを
「high」に設定します

}

C⾔語の関数++ は数学関数に⾮常に密接に基づいており、これらのように、結果を提供できます。関数が返すかどうか、
およびどのような結果が返されるかは、関数名の前にあります。この場合、結果は返されません。そのため、関数名が
その前に配置されます。空所、 何のための英語。さらに、関数は、丸括弧（（））で指定された、処理される1つ以上の
⼊⼒値を受け取ることができます。現在の関数は⼊⼒値を必要としないため、⾓かっこは空のままです。

結果タイプ
関数名

パラメータ

空所 姓（）{
命令1;
指⽰2; 機能体

}

図4.6：関数の定義

関数の定義には、コンパイラが対応する命令を変換し、必要なマシンコマンドを次々にマシンコードに格納するという
効果があります。ただし、これらの指⽰が実際にいつ実⾏されるかについては何も述べていません。

関数の命令は、関数が呼び出されるとすぐに実⾏されます。あなたがしなければならないのは、命令としてパラメータ
とともに関数名を⼊⼒することです。機能があるのでLEDをオンにします パラメータは予期されていません。丸括弧の
間の領域は、呼び出されたときに空のままです。関数呼び出し⾃体は、関数定義の関数本体に含まれている必要があり
ます。

空所 設定（）{
LEDをオンにします （）;

}

4.3。基本 45

これにより、指⽰が明確になります pinMode（LED_BUILTIN、OUTPUT）; と digitalWrite（LED_BUILTIN、HIGH）; 関
数呼び出しもありました。両⽅の関数には、コンマで区切られた2つのパラメーターが与えられました。

4.3.4機能 設定（） と ループ（）

https://www.arduino.cc/reference/en/language/structure/sketch/setup/
https://www.arduino.cc/reference/en/language/structure/sketch/loop/

関数⾃体が他の関数からしか呼び出せない場合、最初の関数呼び出しがどこから⾏われるかという問題に関しては、鶏
が先か卵が先かという問題が発⽣します。

void setup（）{

}

ボイドループ（）{

}

図4.7：スケッチのコース

これが2つの関数定義の出番です 設定（） と ループ（） すべてのスケッチに少なくとも含まれている必要があります。
⼀⽅または両⽅の定義が⽋落している場合、ArduinoIDEはエラーメッセージを表⽰して変換を中⽌します。

両⽅の関数を明⽰的に呼び出す必要はありません。代わりに、スケッチの変換中に、ArduinoIDEによって⽣成されたマ
シンコードにそれらの呼び出しが⾃動的に挿⼊されます。関数設定（） スケッチの開始時に1回呼び出され、関数 ルー
プ（） 図4.7に⽰すように、は何度も呼び出されます。

の場合 ftドゥイーノ 次の3つの状況のいずれかを意味します。

1.翻訳されたスケッチをダウンロードした直後に、そのコードが開始されます。

2.電源を供給した後 ftドゥイーノ 以前にダウンロードしてインストールしたスケッチコードを起動します。

3.のブートローダーがあります ftドゥイーノ リセットボタンを押すことで開始し、8秒間アクティブのままになりま
す。この間にブートローダーがPCによってアドレス指定されない場合、ブートローダーは終了し、代わりに最後に
ダウンロードされたスケッチコードが開始されます。

経験豊富なユーザーへの注意

Cを始めたことがある⼈++ PCなどでは、この時点で驚かれるかもしれません。その場合、特別な機能があり
ました設定（） と ループ（） いいえ。代わりに、という関数がありました主要（）、 これは、プログラム
の開始時に⾃動的に呼び出されました。

Arduino IDEの開発者は、この時点で通常の標準から逸脱することを決定しました。 主要（）-関数は、複雑
なコンピューター上で⼀時的にのみ実⾏され、ハードウェアプログラミングの世界に限られた範囲でしか適
合しないプログラムのために開発されました。

ライブラリ関数

の場合のように 姓（）-関数を実⾏すると、独⾃の関数を作成できます。ArduinoIDEにはすでに独⾃の関数コレクション
があります。コレクションは、主に頻繁に使⽤されるユニバーサル関数で構成されています。

https://www.arduino.cc/reference/en/language/structure/sketch/setup/
https://www.arduino.cc/reference/en/language/structure/sketch/loop/

46 第4章プログラミング

それらは最初から名前でシステムに認識されており、⾃分で定義しなくても、独⾃のプログラムで呼び出すことができ
ます。

機能 pinMode（） と digitalWrite（） そのようなライブラリ関数です。⾔語Cが++ はユニバーサルであり、PCまたは
Arduinoで使⽤しても違いはありません。ライブラリ関数は通常、プラットフォーム固有です。関数pinMode（） は
Arduinoのプログラマーのみが利⽤でき、Windows PC⽤のプログラムを開発する場合、この関数を呼び出すとコンパイ
ルエラーが発⽣します。

これが多くのCが++-例やチュートリアルをインターネットから直接Arduinoに転送しないでください。これらのプログラ
ムがまだArduinoプログラムではなくPCプログラムである場合は、そこで関数ライブラリが使⽤され、Arduinoでは使⽤
できません。これは主に、さまざまなプラットフォームのハードウェアが⼤幅に異なるためです。PCプログラムは主に
画⾯上のウィンドウを開き、ユーザー⼊⼒を処理しますが、Arduinoプログラムはハードウェア⼊⼒とスイッチ出⼒を評
価する可能性が⾼くなります。

経験豊富なユーザーへの注意

ライブラリを使⽤する場合の通常のCとの違いもあります++-PCでのプログラミング。Arduino IDEは、基本的
なArduino固有のライブラリをスケッチで⾃動的に認識し、次のような機能を実現します。pinMode（） 直
接使ってみましょう。

共通C++-コンパイラは、ライブラリを単独で統合しません。いわゆる＃を使⽤する必要があります含む- 指⽰
は明⽰的に知られています。これは、少なくとも提供されているライブラリのほとんどでは、Arduinoでは
必要ありません。

4.3.5例

これにより、基本的な基本事項が説明され、次の例がわかりやすくなります。
1
2
3
4位
5
6⽇
7⽇
8⽇
9

10
11⽇
12⽇

/ * LEDをオンにする機能* / 空所 LEDをオンにします （）
{

pinMode（（LED_BUILTIN 、
digitalWrite（（LED_BUILTIN 、

出⼒）;
⾼い）;

}

空所 設定（）{
LEDをオンにします （）;

}

空所 ループ（）{
}

システムが起動すると、 設定（）-関数が呼び出されました。関数設定（） 関数の呼び出しの形式で単⼀の命令が含まれ
ています LEDをオンにします。 この関数は、スケッチの2⾏⽬から5⾏⽬で定義されており、2つのライブラリ関数を呼び
出して、 ftドゥイーノ 点灯させてください。

the ループ（）-関数は、システムの起動後に常に再度呼び出されます。ただし、空であるため、システムの起動時にLED
が直接オンになっている場合、スケッチにはそれ以上の機能は表⽰されません。

1⾏⽬のコメントは説明のみを⽬的としており、スケッチの翻訳やその機能には影響しません。

4.4役⽴つライブラリ関数

前のセクションで⽰したように、Arduino IDEには、Arduinoの特別なプロパティを使⽤するための関数を提供するいく
つかのライブラリが付属しています。加えてftドゥイーノ アクセスするための独⾃のライブラリのインストール

Schertechnikの⼊⼒と出⼒ ftドゥイーノ アクセスするために。

4.4。役⽴つライブラリ関数 47

最も⼀般的な7つの機能を以下に説明します。あなたはすでに彼らと⼀緒に様々なスケッチを書くことができます。

Arduino IDEの他の機能の説明は、Arduino⾔語リファレンスでオンラインで⾒つけることができます https://
www.arduino.cc/reference/en/#functions さらに ftドゥイーノ-特定の機能については、第9章で説明しています。

4.4.1 pinMode（ピン、モード）

https://www.arduino.cc/reference/en/language/functions/digital-io/pinMode/

この関数は、ATmega32u4マイクロコントローラーのピンを⼊⼒として構成します（モード=⼊⼒） または終了（モード
=出⼒）。 この機能は、マイクロコントローラーの接続を直接操作するため、Arduinoで⾮常に頻繁に使⽤されます。にf
tドゥイーノ に接続するためのほとんどの接続に追加の回路があります

の直接使⽤を可能にするschertechnikコンポーネント pinMode（）-機能を不要にします。代わりに、彼らはもたらす ftドゥ
イーノ-せん断技術に従って⼊⼒と出⼒を操作するためのすべての機能を備えたライブラリ。

主な例外は、内部の⾚⾊発光ダイオードの接続です。にとってピンコード 場合に必要 LED_BUILTIN 利⽤される。

//発光ダイオードの内部接続ピンを出⼒として宣⾔します pinMode（（LED_BUILTIN 、 出
⼒）;

4.4.2 digitalWrite（ピン、値）

https://www.arduino.cc/reference/en/language/functions/digital-io/digitalwrite/

関数 digitalWrite（） 機能を通してあなたを操縦します pinMode（） ピンが出⼒として宣⾔されました。したがって、f
tドゥイーノ 通常、発光ダイオードに使⽤され、まれにIの2つを制御するために使⽤されます。2Cコネクタの利⽤可能な
信号。

にとって ピンコード と同じ値が適⽤されます pinMode（）-関数。の値価値 できる ⾼い また 低い 対応するピンをオン
またはオフにするもの。

//発光ダイオードの内部接続ピンを出⼒として宣⾔します pinMode（（LED_BUILTIN 、 出
⼒）; //発光ダイオードをオンにします digitalWrite（（LED_BUILTIN 、 ⾼い）;

4.4.3 遅延（ミリ秒）

https://www.arduino.cc/reference/en/language/functions/time/delay/

ATmega32u4のような単純なマイクロコントローラーでさえ、⼈間が知覚できるよりも速くほとんどのタスクを実⾏し
ます。プロセスを適切なレベルに減らすために遅れ （） -役⽴つ機能。パラメータとしてミリ秒単位の待機時間を想定し
ています。

セクション4.3.4で説明されているように、関数 設定（） 1回だけ呼び出される関数 ループ（） しかし、何度も何度も。
したがって、次のスケッチでは、発光ダイオードが連続的に点滅します。

空所 設定（）{
//発光ダイオードの内部接続ピンを出⼒として宣⾔します pinMode（（LED_BUILTIN 、 出
⼒）;

}

空所
//
digitalWrite（（LED_BUILTIN 、 // 1
秒待ちます 遅れ （1000）;

//発光ダイオードをオフにします
digitalWrite（（LED_BUILTIN 、 // 1
秒待ちます

ループ（）{
LEDをオンにします

⾼い）;

低い）;

https://www.arduino.cc/reference/en/#functions
https://www.arduino.cc/reference/en/#functions
https://www.arduino.cc/reference/en/language/functions/digital-io/pinMode/
https://www.arduino.cc/reference/en/language/functions/digital-io/digitalwrite/
https://www.arduino.cc/reference/en/language/functions/time/delay/

48 第4章プログラミング

遅れ （1000）;
}

4.4.4 Serial.begin（速度）

https://www.arduino.cc/reference/en/language/functions/communication/serial/begin/

の通信オプション ftドゥイーノ 基本的に、デバイス上で直接せん断技術の⼊⼒と出⼒に制限されます。より複雑なプロ
ジェクトでは、ftドゥイーノ プログラムをフォローします。スケッチ内からユーザーに情報を出⼒する簡単な⽅法は、
シリアルとしょうかん。

PC側では、このライブラリの出⼒は、いわゆるシリアルモニターを介して表⽰されます。その使⽤法については、セク
ション3.3.1で詳しく説明しました。関数Serial.begin（） シリアルモニターを使⽤するためのスケッチを準備します。
したがって、スケッチの最初または設定（）-関数を呼び出すことができます。

関数 Serial.begin（） 次の名前のパラメータが必要です 速度。 この値は、 ftドゥイーノ 無関係であり、たとえば、
115200の値に設定する必要があります。

空所 設定 （）{
//シリアル接続を準備します シリアル。始める
（115200）;

}

空所 ループ（）{
}

4.4.5 Serial.print（val） と Serial.println（val）

https://www.arduino.cc/reference/en/language/functions/communication/serial/print/
https://www.arduino.cc/reference/en/language/functions/communication/serial/println/

経由のシリアル接続です Serial.begin（） 関数が機能するように設定します Serial.print（） と Serial.println（） シリ
アルモニターにメッセージを出⼒するために使⽤できます。の違い Serial.print（） と Serial.println（） を介して出⼒
した後という事実にあります Serial.println（） 新しい出⼒⾏が開始され、その後にさらに出⼒が開始されます
Serial.print（） 同じ⾏で直接実⾏します。関数 Serial.println（） したがって、より複雑な問題を解決するためによく
使⽤されます。

にとって val とりわけ、⽂字列と数字を使⽤できます。⽂字列は⼆重引⽤符（）で囲む必要があります。

空所 設定 （）{
//シリアル接続を準備します シリアル。始める
（115200）;
// PCに接続を受け⼊れる時間を与えるための2秒の遅延//

遅れ （2000）;
//いくつかの問題
シリアル。印刷（（「答えは：」）; シリアル。println
（42）;

}

空所 ループ（）{
}

4.4.6 ftduino.input_get（）、ftduino.output_set（） と ftduino.motor_set（）

もちろん、Schertechnikモデルのコントローラーは、モデルから⼊⼒を受け取り、モデル内の反応をトリガーする必要
があります。theftドゥイーノ-ライブラリについては、第9章で詳しく説明しています。したがって、この段落では最低
限のことだけを説明します。

https://www.arduino.cc/reference/en/language/functions/communication/serial/begin/
https://www.arduino.cc/reference/en/language/functions/communication/serial/print/
https://www.arduino.cc/reference/en/language/functions/communication/serial/println/

4.4。役⽴つライブラリ関数 49

セクション4.3.4で、ライブラリ関数が追加の前提条件なしで使⽤可能であり、スケッチで使⽤できることが特別な機能
であると説明されました。これは、前の例で使⽤したArduino⾃体のライブラリにのみ適⽤されます。theftドゥイーノ-
ライブラリは⾃動的に使⽤可能ではありませんが、スケッチの先頭に＃を付ける必要があります含む-公表される指⽰。

＃ 含む <FtduinoSimple.h>

空所 設定（）{
}

空所 ループ（）{
}

そうして初めて、このライブラリの関数をスケッチで使⽤できます。

リセット

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

O4

O6

I²C

+ 9V + 9V

図4.8：出⼒O1のランプ

このための最も重要な機能は次のとおりです ftduino.input_get（ポート） ⼊⼒を照会し、 ftduino.output_set（ポー
ト、モード） 出⼒を切り替えます。でftduino.input_get（ポート） のためです ポート の値 Ftduino :: I1 それまで
Ftduino :: I8 許可されます。出⼒を切り替える機能があります ftduino.output_set（ポート、モード）、 それによって
ポート の値 Ftduino :: O1 それまで Ftduino :: O8 受け⼊れるかもしれません ファッション の上 Ftduino :: HI 出⼒をオン
にしてに切り替えるときに設定されます Ftduino ::オフ 出⼒をオフに切り替えるように設定されています。

＃ 含む <FtduinoSimple.h>

空所 設定（）{
//⼊⼒I1を読み取ります
ftduino。input_get（（Ftduino ：：：I1）; //
出⼒O1をオンにします ftduino。output_set
（（Ftduino ：：：O1 、 Ftduino ：：：こんにちは）;

}

空所 ループ（）{
}

このスケッチは、図4.8に⽰すように接続されたランプを点灯します。注意：これを⾏うには、 ftドゥイーノ 9ボルトで
供給されます。

関数 ftduino.motor_set（ポート、モード） は ftduino.output_set（ポート、モード） ⾮常に似ていますが、ここにあるのは
エンジン出⼒だけです M1 それまで M4 切り替えることができます。の値ファッション その後できます Ftduino ::左、
Ftduino ::右 また Ftduino ::オフ モーターを反時計回りに回すか、時計回りに回すかによって異なります。

＃ 含む <FtduinoSimple.h>

空所 設定（）{
//⼊⼒I1を読み取ります
ftduino。input_get（（Ftduino ：：：I1）;
// M1でモーターを反時計回りにオンにします ftduino。motor_set
（（Ftduino ：：：M1 、 Ftduino ：：：左）;

}

空所 ループ（）{
}

eifer
ノート注釈
センサーの取得
ftduino.input_get（ポート）

ポート の値
 Ftduino :: I1 から Ftduino :: I8

出力
output_set（ポート、モード）

ポート の値
Ftduino :: O1 から Ftduino :: O8
Ftduino::HI 出⼒をオン
Ftduino::LO ::出力をオフ

50 第4章プログラミング

4.5変数

https://www.arduino.cc/reference/en/#variables

多くの場合、スケッチに何かを記憶したり保存したりする必要があります。たとえば、特定の頻度で何かが発⽣した場
合、それがすでに発⽣した頻度または発⽣しなければならない頻度を途中で記録する必要があります。もう1つの例は、
ユーザーがボタンを押したなどの1回限りのイベントです。このイベントが通過し、ユーザーがボタンを離した場合で
も、必要に応じてアクションを続⾏する必要があります。これを⾏うには、ボタンが最近押されたことに注意する必要
があります。

この⽬的のためのいわゆる変数があります。これらは、コンパイラにメモリ内のスペースを割り当てるように指⽰するために
使⽤されます。ftドゥイーノ 注⽬すべきことのために予約する。スケッチがいわゆるフラッシュメモリに保存されている間ft
ドゥイーノ が保存されるため、スイッチをオフにすることによっても ftドゥイーノ も保存されます。の⼤容量RAMメモリ内の
変数のストレージスペースの場合ftドゥイーノ 提出した。変数の保存された値は、ftドゥイーノ 失った。

変数は、スケッチの関数のように定義されます。関数のような名前が付けられています。さらに、変数に格納するデー
タのタイプを指定する必要があります。次の例では、 variableName タイプのデータの場合 int 作成した。

int variableName;

空所 設定（）{
}

空所 ループ（）{
}

4.5.1データ型 int

https://www.arduino.cc/reference/en/language/variables/data-types/int/

データ型 int 標準のデータ型です。でftドゥイーノ このデータ型では、-32768〜 +32767の範囲の整数値を格納できま
す。これはほとんどの⽤途に⼗分です。

変数は、データを格納し、後で再度呼び出すために使⽤されます。値の保存は、変数に等号（=）の値を割り当てること
によって⾏われます。割り当ての右側の式には、複雑な数学関数や関数呼び出しを含めることができます。たとえば、
⼊⼒のステータスを判別する場合などです。ftドゥイーノ 保存する。

//単純な割り当て variableName = 42;

//複雑な式 variableName =（4 * 8 * 8 +
38）/ 7; //⼊⼒の状態I1

variableName = ftduino。input_get（（Ftduino ：：：I1）;

式には変数を含めることもできます。左側の変数は右側にも表⽰される可能性があり、⽅程式の数学的理解と⽭盾しま
す。

//別の変数から値を取得します variableName = 他の変数名;

//変数の値を変更し、それを変数に再割り当てします variableName = variableName + 1;

表現がそれを⽰唆しているとしても、このタイプの割り当てを数学的⽐較として読むべきではありません。代わりに、
右側の式が最初に計算され、次に結果が左側の変数に割り当てられます。このタイミングは、次のような割り当てにつ
ながります

variableName = variableName + 1;

理にかなっています。

変数は、関数呼び出しのパラメーターとしても使⽤できます。

https://www.arduino.cc/reference/en/#variables
https://www.arduino.cc/reference/en/language/variables/data-types/int/

4.6。条件 51

int variableName;

空所 設定（）{
シリアル。始める （115200）;
variableName = 192/4;

シリアル。印刷（（「可変コンテンツ： シリ
アル。println（（variableName）;

「」）;

}

空所 ループ（）{
}

ここでは、引⽤符（）を正しく使⽤することが重要です。引⽤符で囲まれた単語またはテキストは、テキスト⾃体を表
し、それ以上解釈されません。引⽤符のない単語は、命令、関数名、または変数名を表すことができ、コンパイラーは
この単語に意味を割り当てようとします。

//単語variableNameを出⼒します シリアル。
println（（「variableName」）;
// variablenNameという名前の変数の内容を出⼒します シリアル。println（（
variableName）;

4.6条件

これまでのところ、すべての例は固定された順序の命令で構成されています。すべての指⽰は常に同じ⽅法で実⾏さ
れ、たとえば、LEDが点滅したり、メッセージが発⾏されたりしました。しかし、他のイベントに応じて何も起こりませ
んでした。

ただし、ロボット制御および⼀般的なプログラミングでは、プログラムがイベントに反応する必要があることがよくあ
ります。C++-このメカニズムは、条件に反応できる命令です。

4.6.1 もしも-命令

https://www.arduino.cc/reference/en/language/structure/control-structure/if/

調⼦

もしも（調⼦）{
指⽰1;
インストラクション2; 条件付きボディ

}

図4.9： もしも-命令

the もしも-命令はそのような命令です。彼⼥は括弧内の条件と上の条件を期待していますもしも-ステートメント条件本
体の次のステートメントは、条件が真であることが判明した場合にのみ実⾏されます。

もしも（12> 5 + 3）
シリアル。println（（「12は5と3の合計よりも⼤きい」）;

条件では、さまざまな⽐較演算⼦を使⽤できます。最も重要なものは次のとおりです。
C。++-表記
>>
<
==
！=

⽐較演算
より⼤きい
未満
同じ
等しくない

条件には、関数呼び出しを含めることもできます。の場合にはftduino.input_get（）-関数、関数呼び出しの結果はすで
に真理値（trueまたはfalse）であり、関数呼び出しを直接使⽤できます。からの複数のステートメントが必要ですもし
も-命令は影響を受けます。中括弧（{および}）を使⽤して要約できます。

https://www.arduino.cc/reference/en/language/structure/control-structure/if/

52 第4章プログラミング

リセット

3 I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

1
2 O4

O6

I²C

+ 9V + 9V

図4.10：⼊⼒I1のボタン

＃ 含む <FtduinoSimple.h>

空所 設定（）{
//シリアル接続を準備します シリアル。始める
（115200）;

}

空所 ループ（）{
// I1のボタンが押されているかどうかをテストします もしも
（（ftduino。input_get（（Ftduino ：：：I1））{

シリアル。印刷（（「ボタンが押されました」）; // 1/4秒待
ちます 遅れ （250）;

}
}

4.7研削

プログラムループも⾮常に基本的な概念です。それらを通してのみ、プログラムの⼀部を数回実⾏することが可能で
す。これがないと、プログラムのすべての命令が次々に処理されます。

ただし、前の例では、何かを数回実⾏するプログラムがすでに1つまたは他にありました。これはArduino固有のものに
よるものですループ（）-関数。図4.7に⽰すように、プログラムシーケンス中に何度も⾃動的に呼び出されます。これ
は、対応するCを使⽤せずにArduinoスケッチも使⽤できることを意味します++-プログラム部分で指⽰を繰り返します。

それにもかかわらず、Cも⾒ると役に⽴ちます++-ループの独⾃のメカニズムにフォールバックできるようにする。そのうちの2つを以
下に説明します。

4.7.1 その間-リボン

https://www.arduino.cc/reference/en/language/structure/control-structure/while/

ループ状態

その間（調⼦）{
指⽰1;
インストラクション2; ループ本体

}

図4.11： その間-リボン

the その間-ループを使⽤すると、丸括弧の間の条件が満たされている限り、いわゆるループ本体で次のコマンドを繰り返すこ
とができます。と同じようにもしも-ステートメントには、次のステートメントのいくつかを含めることができます

https://www.arduino.cc/reference/en/language/structure/control-structure/while/

4.7。挽く 53

中括弧を使⽤して要約できます。theその間-次に、ループはステートメントブロック全体に適⽤されます。最初から条件
が満たされない場合、ループ本体は実⾏されません。

その間（（variableName <12）{
シリアル。println（（「変数は12未満です」）; variableName
= variableName + 1;

}

状態も同じです もしも-ステートメントであり、同じ演算⼦を含めることができます。次の例は、のセクションから例を
拡張したものです。もしも-キーが解放されるのを待つための指⽰。

＃ 含む <FtduinoSimple.h>

空所 設定（）{
//シリアル接続を準備します シリアル。始める
（115200）;

}

空所 ループ（）{
// I1のボタンが押されているかどうかをテストします もしも
（（ftduino。input_get（（Ftduino ：：：I1））{

シリアル。印刷（（「ボタンが押されました」）; // 1/4秒待
ちます 遅れ （250）;

//キーが解放されるのを待ちます その間（（ftduino。input_get（（
Ftduino ：：：I1））{

//中括弧の間のスペースは、//中の場合、完全に空のままにすることもできま
す
//繰り返しこれ以上の命令は実⾏されません//

}
}

}

4.7.2 にとって-リボン

https://www.arduino.cc/reference/en/language/structure/control-structure/for/

それより少し複雑 その間-ループは にとって-リボン。丸括弧で囲まれたセミコロンで区切られた3つのステートメントが
含まれています。1つ⽬はループが始まる前に⼀度実⾏され、2つ⽬はループの実⾏中に評価され、その間-ループが実⾏
される頻度をループします。3番⽬のステートメントは最終的に後 ループ本体のすべての実⾏を実⾏しました。最初から
条件が満たされない場合、ループ本体は実⾏されません。事前申告は常に実⾏されます。

ステートメントの前にループする
ループ状態

ループ繰り返し命令

にとって（命令;条件;命令）{
指⽰1;
インストラクション2; ループ本体

}

図4.12： にとって-リボン

⾮常に複雑に聞こえるものは、通常のアプリケーションを⾒ると理解できるようになります。 にとって-ループは次のことを確
認します。特定の頻度でのコマンドの繰り返し。

にとって（（variableName = 0; variableName <12; variableName = variableName + 1）
シリアル。println（（「このテキストは12回出⼒されます」）;

括弧内の3つのステートメントまたは条件は次のとおりです。
variableName
variableName
variableName = variableName + 1;

=
<

0;
12;

https://www.arduino.cc/reference/en/language/structure/control-structure/for/

54 第4章プログラミング

最初のステートメントは、ループの開始時に1回だけ実⾏されます。この場合、値0を変数に書き込みます variableName
2番⽬のステートメントは、ループが実⾏される頻度を決定する条件です。この場合、変数の内容がvariableName 12未
満です。そして、3番⽬のステートメントは最終的に各実⾏の終わりに与えられますにとって-ループが実⾏されました。
この場合、変数の内容がそこに表⽰されますvariableName 1つ増えました。したがって、この例では：

1.変数の内容 variableName 0に設定されます

2.変数の内容が variableName 12未満は...

（a）...ループ本体の命令が実⾏されます...

（b）...そして変数の内容 variableName 1つ増えました

ループ本体は正確に12回実⾏されます。

4.8例

C++-⾔語構成、およびArduinoとの選択された機能 ftドゥイーノ-ライブラリはごく⼀部にすぎません。しかし、この⼩さ
な情報でさえ、いくつかの興味深いスケッチを⾃分で書くのに⼗分です。

4.8.1単純な信号機

この例は、単純なデマンド信号機を⽰しています。スイッチをオンにすると、最初は⾚で表⽰されます。ボタンを押す
とすぐに10秒間緑⾊にジャンプし、その後初期状態に戻ります。

O1
リセット

I1
3 I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

1 O2
2 O4

O6

I²C

+ 9V + 9V

図4.13：単純な信号機

添付のスケッチは⾮常に単純です。の中に設定（）-機能、5⾏⽬で⾚いランプが点灯します。

の中に ループ（）-ボタンが押されているかどうかにかかわらず、機能は10⾏⽬で永続的にテストされます。押すと、11⾏⽬か
ら20⾏⽬の条件付き本⽂全体が実⾏されます。

そこで、12⾏⽬で⾚いランプがオフになり、14⾏⽬で緑のランプがオンになります。16⾏⽬は10,000ミリ秒、つまり10
秒待機してから、18⾏⽬と20⾏⽬で緑⾊のランプが最初にオフになり、次に⾚⾊のランプがオンになります。

これは、マイクロプロセッサの速度のために同時であると認識されるものの例です。12⾏⽬と14⾏⽬または18⾏⽬と20
⾏⽬のランプは次々にオンとオフが切り替えられますが、時間的な違いは⾒られません。数マイクロ秒の距離は⾒えま
せん。

1
2
3
4位
5
6⽇
7⽇

＃ 含む <FtduinoSimple.h>

空所 設定（）{
//信号が始まると、⾚いランプが点灯します ftduino。output_set（（
Ftduino ：：：O1 、 Ftduino ：：：こんにちは）;

}

4.8。例 55

8⽇
9

10
11⽇
12⽇
13⽇
14⽇
15⽇
16
17⽇
18⽇
19⽇
20⽇
21
22⽇

空所 ループ（）{
// I1のボタンが押されているかどうかをテストします もしも（（
ftduino。input_get（（Ftduino ：：：I1））

//⾚いランプを消します ftduino。output_set
（（Ftduino ：：：O1 、 //緑⾊のランプをオ
ンにします ftduino。output_set（（Ftduino
：：：O2 、 // 10秒待ちます 遅れ （10000）;

//緑⾊のランプをオフにします ftduino。
output_set（（Ftduino ：：：O2 、 //⾚いラ
ンプをオンにします ftduino。output_set（（
Ftduino ：：：O1 、

{{

Ftduino ：：：オフ）;

Ftduino ：：：こんにちは）;

Ftduino ：：：オフ）;

Ftduino ：：：こんにちは）;

}
}

4.8.2バリア

バリアの例はもう少し複雑です。これは、それぞれ2つのリミットスイッチを備えた電動バリアで構成されています。上
のボタンI2 バリアが完全に開いたときにアクティブになります。 I3 バリアが完全に閉じられるとアクティブになりま
す。

I2
M1

リセット
I1

3 I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

1
2 O4

O6I2
3

1 O32
I3

3 I²C
1

2 + 9V + 9V M1
3

1 I3
2

図4.14：バリア

注意：ボタン I2 と I3 作動していないときに接点が閉じるように配線されています。ボタンを押すとすぐに開きます。つ
まり、バリアが完全に開いているか閉じています。

スケッチが始まると、ボタンの接点がオンになっている限り、10⾏⽬のモーターが最初に左に回転します。 I2 15⾏⽬で
閉じていると認識されます。つまり、バリアが完全に開いていない場合に限ります。ボタンが押されるとすぐに、モー
ターは18⾏⽬で停⽌します。

ボタンがオンになったら I1 23⾏⽬で押されると、今度はボタンがオンになるまで時計回りに26⾏⽬でモーターが始動します。 I3 が動
作します。その後、モーターは28⾏⽬で停⽌します。

31〜40⾏⽬でランプが点灯します O3 毎回500ミリ秒の休⽌で5回オンとオフを切り替えました。

その後、43⾏⽬から45⾏⽬でバリアが最終的に再び閉じられます。
1
2
3
4位
5
6⽇
7⽇
8⽇
9

10
11⽇
12⽇

＃ 含む <FtduinoSimple.h>

//点滅するカウンター変数 int
カウンター;

空所
//開始時にバリアが開きます

設定 （）{

//モーターを反時計回りに回します
ftduino。motor_set（（Ftduino ：：：M1 、 Ftduino ：：：左）;

//バリアが閉じて開くまで待ちます。ボタンはとして利⽤できるので

3
1 2

56 第4章プログラミング

13⽇
14⽇
15⽇
16
17⽇
18⽇
19⽇
20⽇
21
22⽇
23
24
25⽇
26⽇
27
28
29
30⽇
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

// NC接点が配線されており、ボタンが閉じている限りモーターは//動作します

その間（（ftduino。input_get（（Ftduino ：：：I2））{}

//ボタンが閉じなくなったら、モーターを停⽌します ftduino。motor_set（（Ftduino
：：：M1 、 Ftduino ：：：オフ）;

}

空所
// I1のボタンが押されているかどうかをテストします もしも
（（ftduino。input_get（（Ftduino ：：：I1））{

ループ（）{

//ボタンI3が開くまでモーターを時計回りに回します ftduino。motor_set（（
Ftduino ：：：M1、 Ftduino ：：：正しい）; その間（（ftduino。input_get（（
Ftduino ：：：I3））{} ftduino。motor_set（（Ftduino ：：：M1、 Ftduino
：：：オフ）;

//ランプを5回点滅させます
にとって（（カウンター = 0; カウンター <5; カウンター=カウンター +1）

//ランプが点灯
ftduino。output_set（（Ftduino ：：：O3 、
// 500ミリ秒待つ
遅れ （500）;
//ランプオフ
ftduino。output_set（（Ftduino ：：：O3 、
// 500ミリ秒待つ
遅れ （500）;

{{

Ftduino ：：：こんにちは）;

Ftduino ：：：オフ）;

}

//ボタンI2が開くまでモーターを反時計回りに回します ftduino。motor_set（（
Ftduino ：：：M1、 Ftduino ：：：左）; その間（（ftduino。input_get（（
Ftduino ：：：I2））{} ftduino。motor_set（（Ftduino ：：：M1、 Ftduino
：：：オフ）;

}
}

4.9警告 少しの記憶

⼤規模なプロジェクトをプログラミングする場合、特にライブラリを多⽤する場合、図4.15に⽰す警告メッセージが簡
単に表⽰される可能性があります。

図4.15：メモリ不⾜に関するArduinoIDEの警告

以来 ftドゥイーノ 2560バイトの動的メモリ（RAMメモリ）しかないため、この不⾜しているリソースを処理するのは簡
単ではありません。

ワーキングメモリの不⾜に関する警告は、ダイナミックRAMメモリと いいえ メッセージにも記載されているプログラム
メモリスペース（フラッシュメモリとも呼ばれます）。プログラムメモリは、ためらうことなく100％まで満たすことが
できます。

4.9.1影響

のフラッシュメモリ内 ftドゥイーノ 2つのプログラムがいつでも保存されます。

ブートローダー ブートローダー（セクション1.2.1を参照）は、フラッシュメモリの保護された部分に保存されます。彼は
スケッチをArduinoIDEからUSB経由でフラッシュメモリの残りの部分にロードするために使⽤されます。

4.9。警告少しの記憶 57

スケッチ スケッチは、Arduino IDEとブートローダーの助けを借りてユーザーがインストールし、すべてを⾏うことができます
ブートローダーが使⽤していないフラッシュメモリを使⽤してください。の中にftドゥイーノ ブートローダーが占める領
域に加えて、28672バイトのフラッシュメモリを⾃分のスキットに使⽤できます。

メッセージは、両⽅のプログラムで（異なる）意味を持ちます。

スケッチへの影響

スケッチに対するRAMの不⾜の正確な影響を予測することは困難です。動的メモリの不⾜は、スケッチの実⾏中に追加
の動的メモリが何度も必要になるため、問題になります。たとえば、計算の中間結果を保存したり、サブ機能が実⾏さ
れた後にスケッチの実⾏を続⾏する必要がある場所を保存したりするためです。と呼ばれる。中間結果または継続ポイ
ントは、メモリの不⾜によって改ざんされます。プログラム全体の実⾏は、完全に予期しない無意味な反応につながる
可能性があります。

このような⽋陥のあるスケッチは、プログラムの正しい実⾏を復元するために、いつでも修正されたスケッチに置き換
えることができます。

疑わしい場合は、最初に単純で既知の機能スケッチをインストールする必要があります。下のまばたきスケッチ
これに役⽴ちます。ファイル。例 。01.基本 。点滅

ブートローダーへの影響

ブートローダー⾃体は、Flashの独⽴したプログラムです。このメモリをスケッチと共有する必要がないため、動的メモ
リのボトルネックの影響を受けません。ただし、各スケッチ内にはブートローダーに属する⼩さな機能ブロックがあ
り、ArduinoIDEによってユーザーのスケッチのコードに⽬に⾒えない形で統合されています。

この部分は、スケッチの実⾏中にPCとのUSB通信を実現します。とりわけ、この部分は、スケッチのアップロードの準
備としてブートローダーを開始するためにArduinoIDEによって送信されたコマンドに反応します。実⾏中のスケッチの
この部分で、Arduino IDEが新しいスケッチを転送したいと判断した場合、ブートローダーがアクティブになります。次
に、ブートローダーが新しいスケッチの実際の受信を処理します。

動的メモリが不⾜している場合、スケッチのこの⾮表⽰部分が正しく機能しない可能性があります。Arduino IDEはブー
トローダー⾃体の起動を開始できなくなり、ArduinoIDEによるアップロードの試⾏は失敗します。PCへのUSB通信が⾮
常に損なわれている可能性がありますftドゥイーノ スケッチの実⾏中に、PCによって正しく認識されないか、まったく
認識されません。

この場合、 ftドゥイーノ リセットボタンを介して（セクション1.2.3を参照）。ArduinoIDEが使⽤できなくなった場合ft
ドゥイーノ USB経由でアドレス指定し、ブートローダーをアクティブ化する場合でも、セクション1.3.2で説明されてい
るように、リセットボタンを使⽤してブートローダーを⼿動でアクティブ化することができます。リセットボタンの機
能は常に利⽤可能であり、誤ったスケッチの影響を受けることはありません。その助けを借りて、上に新しいスケッチ
を作成することは常に可能ですftドゥイーノ ロードする。

4.9.2予防措置

上記の警告が表⽰された場合、疑わしい場合は、上のスケッチを使⽤しないでください。 ftドゥイーノ ロードする。リセット
ボタンを使⽤して障害のあるスケッチをいつでも置き換えることができる場合でも、この⼿順には適切なタイミングが必要で
あり、頑固なスケッチが正常に置き換えられるまで数回の試⾏が必要になる場合があります。

⼀定のデータのためのフラッシュメモリの使⽤

多くのスケッチでは、テキスト出⼒は、シリアルモニターを介して、またはたとえば⼩さなディスプレイで⾏われます。した
がって、スケッチには通常、次のような線が含まれます。

シリアル。println（（"こんにちは世界！"）;

58 第4章プログラミング

12バイトの貴重なダイナミックRAMメモリが不必要に使⽤されていることは明らかではありません。これは、最⼩限の
スケッチで簡単にテストできます。

1
2
3
4位
5
6⽇
7⽇

空所 設定（）{
シリアル。始める （9600）;

}
空所 ループ（）{

シリアル。println（（"こんにちは世界！"）; 遅
れ （1000）;

}

Arduino IDEによると、このスケッチは163バイトまたは動的メモリの6％を占めます（正確な値はArduino IDEのバー
ジョンによってわずかに異なる場合があります）。5⾏⽬に接頭辞//を付けてコメントアウトすると、メモリ消費量が
149バイトに削減されます。つまり、14バイト全体の動的メモリが節約されます。

その理由は、ArduinoIDEが⽂字列HelloWorld！を想定しているためです。さらに処理する必要があります。したがっ
て、ArduinoIDEは⽂字列HelloWorld！を作成します。スケッチによって変更できるダイナミックメモリ内。ただし、ス
ケッチの実⾏中にこの⽂字列を変更する予定はないため、フラッシュメモリに残しておくこともできます。これはまさ
にArduinoIDEがヘルプ機能に提供するものです。シンプルなもの F（...） ⽂字列の周りはまさにそれを⾏います。これ
を⾏うには、前のhelloworld出⼒を次の構⽂に置き換えます。

シリアル。println（（F。（（"こんにちは世界！"））;

このスケッチは前のバージョンと同じように動作しますが、163バイトではなく151バイトしか占有しません。違いは、
⽂字列Hello World！の⻑さに正確に対応します。さらに、⽂字列を終了する別のバイト。多くのスケッチでは、これに
よりすでにかなりの量の動的メモリが節約されています。

ただし、フラッシュメモリの取り扱いはそれほど簡単ではありません。次の例では、別のヘルパーメカニズムを使⽤し
ています。プログラム ⽂字列をフラッシュに保存します。残念ながら、これは単純に⾏うことはできません println（）
出⼒。

// ftDuinoはRAMを読み取るべきかFlashを読み取るべきかを知らないため、//以下は機能しません

static const char st[] プログラム = "こんにちは世界！"; シリアル。
println（（st）;

問題はそれです println（） かどうかわからない st フラッシュまたはRAMメモリを指します。考えられる解決策の1つ
は、次の例のように、特殊機能を使⽤してフラッシュメモリから⽂字を個別に読み取り、出⼒することです。

static const char st[] プログラム = 「Helloworld！\ N」; にとって （（char
c = 0; c < strlen_P（（st）; c++）

シリアル。印刷（（（char）。pgm_read_byte_near（（st + c））;

Arduino IDEのドキュメントには、フラッシュメモリを使⽤するためのさらに多くの例が含まれています。キーワードの下で プログラ
ム さらなる情報は、とりわけ、の下で⾒つけることができます

https://www.arduino.cc/reference/en/language/variables/utilities/progmem/

と
http://playground.arduino.cc/Main/PROGMEM。

この⼿法は、⽂字列だけでなく、トーンや値の表など、あらゆる種類の静的データに適⽤できます。

代替ライブラリの使⽤

ライブラリは実⽤的なものであり、問 題ではありません。そして、機能豊富なライブラリは、特定の問題に必要なすべ
てのものを⾒つける可能性が⾼くなります。

ただし、多くの場合、特にリソースを⼤量に消費し、⼤量のメモリを占有するのは、まさに特に⼤規模なライブラリで
す。セクション6.13.3amのOLEDディスプレイを使⽤する場合ftドゥイーノ たとえば、Adafruitのグラフィックライブラ
リは、複雑なグラフィックのすべての機能を備えていますが、同時に⼤量のメモリを消費します。

https://www.arduino.cc/reference/en/language/variables/utilities/progmem/
http://playground.arduino.cc/Main/PROGMEM

4.10。追加情報 59

ほんの数⾏のコードで、次の例はメッセージをもたらします "こんにちは世界" OLED画⾯で。
1
2
3
4位
5
6⽇
7⽇
8⽇
9

10
11⽇
12⽇
13⽇

＃ 含む
＃ 含む
Adafruit_SSD1306

<Adafruit_GFX.h>
<Adafruit_SSD1306.h>

画⾯ （-1）;

空所 設定（）{
画⾯。始める（（SSD1306_SWITCHCAPVCC 、 画⾯
。clearDisplay （）; 画⾯。setTextColor（（⽩い）;
画⾯。println（（"こんにちは世界！"）; 画⾯。画⾯
（）;

0x3C）;

}

空所 ループ（）{}

この単純な例でさえ、1504バイトまたは動的メモリの58％を占めています。これは主に、ライブラリが複雑な描画操作
のために画⾯コンテンツのコピーをダイナミックメモリに保持しているという事実によるものです。128 x 64ピクセルで
は、それはすでに128∗64/8⽇ = 1024 バイト。

ただし、グラフィックスキルはまったく必要ないが、16 x 8⽂字の表⽰でうまくいく場合は、経済的な代替⼿段がありま
す。

それらの1つは U8g2-ライブラリ、特にそこに提供されているもの U8x8-としょうかん。ArduinoIDEのライブラリマネージャー
に直接インストールできます。The "こんにちは世界" -この場合の例は次のようになります。

1
2
3
4位
5
6⽇
7⽇
8⽇
9

10
11⽇
12⽇

＃ 含む <U8x8lib.h>
U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8（（U8X8_PIN_NONE）;

空所 設定（（空所）{

u8x8。始める （）; u8x8。
setPowerSave （0）;
u8x8。setFont（（u8x8_font_chroma48medium8_r）; u8x8
。drawString （0.0、"こんにちは世界！"）;

}

空所 ループ（）{}

ここでは、動的メモリの22％に相当する578バイトのみが使⽤されており、他のライブラリや独⾃のコードのためにさらに多く
のバイトが残っています。

これは多くのライブラリと似ており、最⼩限の労⼒とリソースの使⽤で、どのライブラリがこれらの要件を満たすこと
ができるかを詳しく調べる価値があります。多くの場合、わずかな制限で⼤きな利益を得ることができます。

4.10詳細情報

両⽅のCに多くのチュートリアルがあります++-プログラミング2 Arduinoプログラミングと同様に3。

これらおよび同様のチュートリアルでは、他の多くの⾔語構造とライブラリ関数について説明しています。そのような
チュートリアルはにありませんftドゥイーノ 注⽂仕⽴て。ただし、この章では、他のチュートリアルでの作業を継続でき
るようにするために必要な基本事項を提供しました。PCプログラミングやArduinoプログラミングの世界のすべてをに
適⽤できるわけではありませんftドゥイーノ 移⾏。次の章の実験とモデル、および提供されているサンプルプログラムと
ともに、プロフェッショナルCのより深い紹介++-プログラミングが可能です。

2C。++-チュートリアル http://www.online-tutorials.net/c-c++-c/c++-tutorial-teil-1/tutorials-t-1-58.html
3Arduinoチュートリアル http://www.arduino-tutorial.de

http://www.online-tutorials.net/c-c++-c/c++-tutorial-teil-1/tutorials-t-1-58.html
http://www.arduino-tutorial.de

第5章

ftドゥイーノ 学校で

the ftドゥイーノ Arduinoファミリーのすべてのメンバーと同様に、主にC⾔語でのプログラミングに使⽤されました++ 第4章で説明さ
れているように設計されています。しますかftドゥイーノ 対応するスケッチが事前に提供されているため、はるかに少ない需要で使⽤
できますが、プログラミングの知識がなくても使⽤できます。theftドゥイーノ そんなに多くのことができます

さまざまなグレードレベルで柔軟に使⽤できます。

難易度

Blockly MinecraftArduinoを引っ掻く

図5.1： ftドゥイーノ-難易度の異なるプログラミング環境

すべての場合において ftドゥイーノ 確⽴されたプロジェクト（Scratch、Blockly、...）。その結果、ftドゥイーノ 孤⽴したソリュー
ションではありませんが、他のプロジェクト、たとえば、Arduinoベースのプロジェクトと同等の⽴場で使⽤できます。Arduinoの使
⽤からの知識とツールはに適⽤することができますftドゥイーノ 送信され、その逆も同様です。多くの場合、ftドゥイーノ せん断技術
モデルの助けを借りてこのような簡単なスタートを切ることができ、その後、古典的なArduinoに基づいた電気的および機械的により
洗練された構造が続きます。

5.1スクラッチを使⽤したグラフィックプログラミング

ウィキペディアはScratchプログラミング⾔語について次のように書いています。

⽬標の設定

その⽬的は、プログラミングの基本的な概念を初⼼者、特に⼦供や若者に理解させることです。想像する、
プログラムする、共有する（考え、開発する、共有する）というモットーの下で、相互交換と組み合わせた
独⾃のゲームやマルチメディアアプリケーションの創造的かつ探索的な作成が動機として使⽤されます。結
果は、スクラッチプレーヤーを使⽤して、広告なしで国際的なオンラインコミュニティで再⽣、議論、さら
に発展させることができます。初⼼者向けのアイデアを作成し、プログラミングの原則を近づける例もいく
つかあります。

https://de.wikipedia.org/wiki/Scratch_(Programmierssprache）

https://de.wikipedia.org/wiki/Scratch_(Programmiersprache)

5.1。Scratchを使⽤したグラフィックプログラミング 61

オリジナルでは、Scratchは純粋なシミュレーション環境として設計されていました。プログラミングは、PC上のマウスを使⽤
してグラフィカルに実⾏されます。PCは、プログラムの実⾏と結果の表⽰も担当します。Scratchは、最初はそのような実際の
ハードウェアを想定していませんftドゥイーノ プログラム開発に関与する。

図5.2：Scratch2.0プログラミング環境

スクラッチは英語を話す環境から来ており、元の https://scratch.mit.edu/ ⾒つけられる。しかし、そのようなドイツ語
のポータルもありますDACH Scratch Wiki 下 https://scratch-dach.info と INFスクール 下 https://www.inf-schule.de/
programmierung/scratchこれは特にドイツ語圏の教師と⽣徒を対象としており、学校へのスクラッチエントリーをサ
ポートしています。

5.1.1スクラッチバージョン

Scratchは、3つの独⽴したバージョンで登場しました。

スクラッチ1.x 2007年にリリースされ、スタンドアロンPCプログラムとして提供されました。このシリーズの最後のバージョン1.4
ベースのScratch-for-Arduino（S4A）は、 ftドゥイーノ セクション5.1.2で説明されているように使⽤できます。
Scratch 1は、2009年以降開発されていません。

スクラッチ2.0 2013年に登場し、まったく新しい開発でした。Scratch 2.0はブラウザベースであり、
FlashFrameworkと呼ばれます。Flashは、主にセキュリティ上の理由から、最近の多くのブラウザではサポートされな
くなりました。したがって、Scratch2.0の使⽤はますます困難になっています。外部デバイスの使⽤については、
ScratchXバリアント（を参照）https://scratchx.org/） 派⽣。⼀ftドゥイーノ-接続はScratch2.0またはScratchX⽤に開発
されていません（これまでのところ）。

スクラッチ3.0 2019年にリリースされ、再び完全に新しい開発です。Scratch3.0はブラウザでもあります
ベースですが、Flashを省略し、代わりにHTML5を使⽤します。したがって、最新のすべてのブラウザで使⽤できます。⼀ftドゥイーノ
接続については、セクション5.1.3で説明しています。

新しいプロジェクトにはScratch3.0を使⽤する必要があります。Scratch for Arduino（S4A）の使⽤は、既存のS4Aイン
ストールに基づいて構築する場合にのみ意味があります。S4Aは、通常のArduinoを使⽤する多くの学校で使⽤されてお
り、ftドゥイーノ 適⽤されます。

⼀⽅、Scratch 3.0は活発に開発されており、 ftドゥイーノ-接続は積極的に開発されています。

5.1.2 Arduino（S4A）のスクラッチ1.4

プロジェクト Arduinoのスクラッチ、 略してS4AはScratch1.4に基づいており、PC上の仮想ScratchワールドとPCに接
続された物理ハードウェアとの間に相互作⽤を作成するという⽬標を設定しています。S4A

ドイツ語から⽇本語に翻訳 - www.onlinedoctranslator.com

https://scratch.mit.edu/
https://scratch-dach.info
https://www.inf-schule.de/programmierung/scratch
https://scratchx.org/
https://www.onlinedoctranslator.com/ja/?utm_source=onlinedoctranslator&utm_medium=pdf&utm_campaign=attribution

62 第5章。 ftドゥイーノ 学校で

これを⾏うために、プロジェクトはArduinosを使⽤し、それらを仮想スクラッチ環境に統合します。PCのスクラッチプログラムは、
接続されたArduinoのセンサー⼊⼒（キーストロークなど）に反応したり、Arduinoのアクチュエーター（ランプなど）のアクション
をトリガーしたりできます。

S4Aは、⼈気のあるArduinoのほとんどと互換性があります。これらには、対応するスケッチを事前に提供し、USB経由
でPCに接続する必要があります。対応するスケッチは以下のとおりですhttp://s4a.cat/ 利⽤可能。

Scratchとは対照的に、S4Aはブラウザでは実⾏されませんが、PCに別のプログラムをインストールする必要があります。対応するダ
ウンロードはで⾒つけることができますhttp://s4a.cat/。

S4Aはスペイン語圏から来ており、元の http://s4a.cat/ 利⽤可能。ドイツ語の情報は、たとえば、https://scratch-
dach.info/wiki/S4A。

スクラッチ ftドゥイーノ

S4Aの ftドゥイーノ ⼊⼒するだけ ftドゥイーノ それ⾃体とそこにインストールされるスケッチ。PC側では、S4AとS4Aで
の使⽤に違いはありません。ftドゥイーノ。Arduinosと ftドゥイーノ 共有。

Arduinoと ftドゥイーノ 異なる接続がある場合、ユーザーはどの指定の下での接続を知っている必要があります ftドゥ
イーノ S4Aで対処できます。次の図は、対応する割り当てを⽰しています。

デジタル13

S4A出⼒
リセット

analog5
アナログ6
analog9
digital10
digital11
digital12

S4Aセンサー
Analog0

Analog1

I1

I2

I3

I4

I5

O1 O2

O3

O5

O7 O8

C1

O4

O6
モーター4

エンジン7

モーター8

Analog2

Analog3

Analog4

Analog5

Digital2

Digital3

I6

I7

I8

C2

C3

C4

I²C

+ 9V + 9V

図5.3：の割り当て ftドゥイーノ-S4Aのピン

でS4Aを使⽤するための詳細情報 ftドゥイーノ セクション8.6にあります。

5.1.3スクラッチ3.0

Scratch 3.0はオンラインアプリケーションであり、⼀般的なブラウザから直接アクセスできます。 https://scratch.mit.edu 開かれま
す。

完全に新しい開発と完全に異なる基盤技術にもかかわらず、Scratch3.0はScratch2.0に⾮常に基づいており、切り替えは
まったく問題がない可能性があります。

せん断技術または同様のシステムを使⽤していない学校での引っかき傷の広がりは、通常、簡単で迅速な開始を保証し
ます。学⽣は最初、追加のハードウェアなしでスクラッチ環境で直接経験を積み、基本的な取り扱いに慣れることがで
きます。の使⽤ftドゥイーノ その後、効果的に実⾏でき、実際のハードウェアの使⽤をスクラッチに切り替える場合は、
ソフトウェア環境を変更する必要はありません。

の使⽤ ftドゥイーノ Scratch3.0の下で

の使⽤について ftドゥイーノ さらに2つのことが必要です。⼀⽅では、ftドゥイーノ 適切なスケッチをインストールする必要が
あります。次に、使⽤するScratch 3.0バリアントには、適切ないわゆる拡張機能が含まれている必要があります。

http://s4a.cat/
http://s4a.cat/
http://s4a.cat/
https://scratch-dach.info/wiki/S4A
https://scratch.mit.edu

5.1。Scratchを使⽤したグラフィックプログラミング 63

図5.4：Scratch3のメイン画⾯ ftドゥイーノ-拡⼤

Scratch 3.0を使⽤するには、次の⼿順が必要です。

?? のインストール

?? の接続 ftドゥイーノ USB経由でPCまたはスマートフォンに

?? ScratchWebサイトを開きます https://harbaum.github.io/ftduino/webusb/scratch3/ Chromeブラウザで

WebUSBの詳細と適切なスケッチのインストール⽅法については、セクション6.18を参照してください。開始後、最

初は拡張機能は統合されていません。内線番号には、選択画⾯からアクセスできます。

ファイル。例 。WebUSB 。IoServer -スケッチ ftドゥイーノ。

図5.5：Scratch3.0で拡張機能を選択するためのボタン

図5.6： ftドゥイーノ-選択画⾯の拡張

拡張機能をクリックすると、Scratchにインストールされます。接続状態ftドゥイーノ 3分の1までです

https://harbaum.github.io/ftduino/webusb/scratch3/

64 第5章。 ftドゥイーノ 学校で

緑の開始フラグと⾚の停⽌記号の横にある記号。

シンボルは3つの状態を区別します。⾚い⼗字は、USB接続に⼀般的な問題があることを⽰しています。オレンジ⾊の接
続されていないアイコンは、ftドゥイーノ 選択できます。この記号をクリックすると、接続されているデバイスのリスト
が開きます。この場合は、ftドゥイーノ。しますかftドゥイーノ を選択すると、記号が緑⾊の接続記号に変わり、 ftドゥ
イーノ に使える。

（a）
WebUSB

番号 （b）
バウンド

（c）接続済み

図5.7： ftドゥイーノスタートストップシンボルの横にあるステータスシンボル

通常、選択は1回だけ必要です。theftドゥイーノ 使⽤中にプラグを抜き差しすることができ、その後⾃動的に統合する
必要があります。

Scratch3.0の使⽤

Scratch 3.0はブラウザでの使⽤を⽬的としているため、最初はオンラインで使⽤することを⽬的としています。インターネットに接続せずに
Scratch3.0を使⽤できるようにするために、必要なすべてのデータをPCにローカルに保存することができます。

図5.8：ローカルのScratch3.0サーバー

この⽬的については、を参照してください。 https://github.com/harbaum/ftduino/releases と呼ばれるzipアーカイブ
s30srv.zip。 これには、通常インターネットから取得されるScratch3.0インストールのすべてのデータが含まれていま
す。さらに、と呼ばれる⼩さなWindowsアプリケーションがありますs30srv.exe 含む。これは、インストールや特別な
権限なしで開始でき、ローカルデータをWebブラウザで利⽤できるようにします。プログラムはそれ以上の注意を必要
としませんが、Scratchを使⽤する限り開いたままにしておく必要があります。

Oine-Scratchはブラウザの下にあります http：//ローカルホスト：8000 到達すること。

すべてのデータはPCにローカルに保存されるため、もちろん⾃動更新はありません。更新が発⽣した場合、ユーザーは
ZIPアーカイブを再度ダウンロードする必要があります。

5.2 Blockly / Bricklyを使⽤したグラフィックプログラミング

Googleは、スクラッチのアイデアの可能性と、それが現在受けている技術的な制限の両⽅を認識しました。

Blocklyは、Googleがスクラッチ哲学を現代の技術ベースに置く試みです。BlocklyはHTML5に基づいているため、すべての⼀
般的なWebブラウザーおよびすべての⼀般的なプラットフォーム（Windows、Apple MacOS、Linux、Android、およびIOSを
含む）で、当⾯はぬるいです。

Scratchは完全な環境を形成し、グラフィックコードの表⽰に加えて、作成されたプログラムを実⾏してその結果を表⽰
するオプションも含まれています。⼀⽅、Blockly⾃体は、純粋なコードエディタです。したがって、Blocklyで⽣成され
たコードは、Blockly⾃体では実⾏できず、Blocklyは何ももたらしません。

https://github.com/harbaum/ftduino/releases
http://localhost:8000

5.2。Blockly / Bricklyを使⽤したグラフィックプログラミング 65

図5.9：Blocklyユーザーインターフェイス

プログラム出⼒を表すためのメカニズム。エンドユーザーが使⽤できる環境を作成するには、最初にソフトウェア開発
者が両⽅を追加する必要があります。

Brickly（セクション8.3を参照）とBrickly-Lite（セクション6.18.4を参照）は、schertechnik-TXTコントローラーと ft
ドゥイーノ 開発されました。両⽅の環境が意図的に類似していて、ユーザーに⾮常に類似している場合でも、技術的な
機能は⼤きく異なります。

5.2.1ブリックリー

Bricklyの場合、BlocklyはTXTコントローラーのコードを開発するために使⽤されます。Bricklyは、ブラウザのいわゆる
Pythonコードで⽣成され、TXTに転送されてそこで実⾏されます。⼀度作成されたレンガのようなプログラムは、TXTに
永続的に存在し、後でいつでもTXTで⼿動で開始することもできます。Webブラウザは、新しいプログラムを作成するた
めにのみ必要です。TXTでプログラムを実⾏している間、TXTの画⾯で出⼒を⾏うことができます。ユーザーがWebブラ
ウザーでTXTに接続している場合、これらの出⼒もTXTからブラウザーに返送され、そこで出⼒されます。

ブラウザに表⽰されるすべての情報は、TXTからブラウザに送信されます。インターネットの他の部分とデータが交換さ
れることはありません。

Bricklyは、主にTXTの⼊⼒と出⼒を操作するために開発されました。したがって、BricklyのBlocklyベースのグラフィッ
クエディタは、TXTの接続を操作するのに適したブロックを含むように拡張されました。TXTにいわゆるBricklyプラグイ
ンをインストールする（を参照）https://github.com/harbaum/brickly-plugins）ブリックリーに拡張できます。このよ
うなプラグインにより、ftドゥイーノ TXT⾃体に加えて、USBを介してTXTおよびBricklyプログラムから結合され、接続
された接続も ftドゥイーノ 使⽤します。

Bricklyは、若い学⽣でも使いやすく、Scratchよりもシンプルで使いやすいユーザーインターフェイスを備えています。
ただし、Bricklyを使⽤するには、事前にTXTにBricklyソフトウェアをインストールする必要があります。これには、TXT
でいわゆるコミュニティファームウェアを使⽤する必要があります（を参照）。 https://cfw.ftcommunity.de/
ftcommunity-TXT/de/）。を使⽤するにはftドゥイーノ TXTには、 ftドゥイーノ-プラグインが必要です。経験豊富な
ユーザーは、TXTコントローラーの代わりにはるかに安価なRaspberryPiを使⽤することもできます。エンドユーザーに
とって違いはありません。この設定は、学⽣にとっても使いやすいものです。

後でBricklyを使⽤するには、次の準備⼿順が必要です。

?? TXTへのコミュニティファームウェアのインストール（または
https://github.com/harbaum/tx-pi）。

の上 に ラズベリーパイ、 ご参照ください

https://github.com/harbaum/brickly-plugins
https://cfw.ftcommunity.de/ftcommunity-TXT/de/
https://github.com/harbaum/tx-pi

66 第5章。 ftドゥイーノ 学校で

図5.10：Bricklyユーザーインターフェイス

?? インストール
TXT / de /プログラミング/ブリック/）。

から ブリックリー の上 に txt （ご参照ください https://cfw.ftcommunity.de/ftcommunity-

?? 任意のブラウザからのTXTへのアクセス

する必要があります ftドゥイーノ TXTによって対処されている場合でも、次の⼿順が必要です。

?? のインストール ftduino_direct-上のスケッチ ftドゥイーノ （ご参照ください https://github.com/PeterDHabermehl/ftduino_direct）。

?? ftduino-Brickly-Pluginのインストール（を参照） https://github.com/harbaum/brickly-plugins）。

5.2.2Brickly-Lite

Brickly-Liteを使⽤する場合の管理作業は、Bricklyを使⽤する場合よりもはるかに少なくなります。学⽣の観点からは、
BricklyとBrickly-Liteの違いはごくわずかです。Brickly-Liteは簡略化された表現を提供します。

図5.11：BricklyLiteのユーザーインターフェイス

https://cfw.ftcommunity.de/ftcommunity-TXT/de/programming/brickly/
https://cfw.ftcommunity.de/ftcommunity-TXT/de/programming/brickly/
https://github.com/PeterDHabermehl/ftduino_direct
https://github.com/harbaum/brickly-plugins

5.3。Minecraftでの遊び⼼のあるプログラミング 67

Bricklyとは対照的に、Brickly-Liteはインターネットからすべてのデータを取得します。したがって、Brickly-Liteを使⽤
するにはインターネット接続が必要です。また、Bricklyでは、ブラウザーはコードの⼊⼒と結果の出⼒にのみ使⽤され
ますが、Brickly-Liteでは、実際のプログラムの実⾏を含むほとんどすべてのタスクを引き継ぎます。theftドゥイーノ し
たがって、その⼊⼒と出⼒をBrickly-Liteを使⽤してブラウザーで使⽤できるようにしますが、実際のBricklyプログラム
は実⾏しません。このため、ブラウザは常に後でプログラムを実⾏する必要があります。Brickly-Liteで作成されたプロ
グラムは、ブラウザなしでは実⾏できません。

学⽣はこれらの違いに気づきません。ただし、教師にとっては、準備の労⼒はブリックリーに⽐べてはるかに少なくなりま
す。ftドゥイーノ およびブラウザには、これ以上のコンポーネントは必要ありません。最⼤の制限は、Chromeブラウザの定義
です（を参照）https://www.google.com/intl/de_ALL/chrome/）。この場合のように、USB経由でローカルに接続されたデバ
イスを備えたこのブラウザタイプのみが必要であるため、これが必要です。ftドゥイーノ 通信できます。

Brickly-Liteを使⽤するには、次の⼿順が必要です。

?? のインストール

?? の接続 ftドゥイーノ USB経由でPCまたはスマートフォンに

?? BricklyLiteのWebサイトを開きます https://harbaum.github.io/ftduino/webusb/brickly-lite/ Chromeブラウザで

ファイル。例 。WebUSB 。IoServer -スケッチ ftドゥイーノ。

5.3Minecraftでの遊び⼼のあるプログラミング

Minecraftは⾮常に⼈気のある建築ゲームです。とりわけ、それはいわゆるレッドストーンの形で⼀種の電気回路シミュ
レーションを含みます。この導電性の仮想素材を使⽤すると、対応するブロックをゲーム内で接続でき、ボタンやス
イッチなどのゲーム内部センサーをランプや圧⼒シリンダーなどのアクチュエーターに接続できます。レッドストーン
トーチ（インバーター、ネゲーター）、コンパレーター、遅延エレメントなどの追加のロジックエレメントにより、複
雑な回路が可能になります。

とともに ftドゥイーノ Minecraftは物理的な世界に接続でき、Minecraftの仮想センサーは物理的な世界に接続できます
schertechnikアクチュエータをトリガーします。その逆も同様です。

図5.12：Minecraft ftドゥイーノ-インターフェース

教師側の準備時間は、適切なスケッチを再⽣することに限定されています。 ftドゥイーノ 対応するのインストールと同
様に ftドゥイーノ-セクション8.7で説明されているように、既存のMinecraftインストールに変更します。Minecraftは商
⽤ソフトウェアであり、ライセンスを別途購⼊する必要があります。のような拡張によるゲームの変更ftドゥイーノ
-Modはメーカーによって明⽰的に意図されたものであり、ライセンス条件に違反していません。

https://www.google.com/intl/de_ALL/chrome/
https://harbaum.github.io/ftduino/webusb/brickly-lite/

68 第5章。 ftドゥイーノ 学校で

学⽣の側では、習熟は理論的にはかなり時間がかかります。実際には、学⽣の⼤部分はMinecraftの概念に精通してお
り、追加のロジックを理解しています。ftドゥイーノすぐにブロックします。原則として、Minecraftの経験を積んだ学
⽣は、ライトなどの単純な回路を実装して、わずか数分で物理モデルに接続することができます。

Minecraftの使⽤は、すでにMinecraft-nerである学⽣をやる気にさせるのに特に適しています。教師として、あなたは⾮
常に⾼いレベルの専⾨知識と驚くべき能⼒を持っている学⽣を考慮しなければなりません。Minecraftは、⾮正統的なソ
リューションを作成し、たとえば、仮想⽣物または⾞両（⼤型トラック）を信号処理に統合することを勧めます。

Minecraftを使⽤するには、セクション8.7で詳しく説明されている次の⼿順が必要です。

?? ライセンスされたMinecraftバージョン1.12.2のインストール

?? ForgeModシステムのインストール

?? のインストール ftドゥイーノ-モッド

?? のインストール

?? の接続 ftドゥイーノ USB経由でPCに

ファイル。例 。WebUSB 。IoServer -スケッチ ftドゥイーノ。

5.4 ArduinoIDEを使⽤したテキストベースのプログラミング

ScratchとBricklyは、それ⾃体が複雑な構造です。たとえば、PC上のプログラムとして、またはモバイルデバイスのブラウザ内のアク
ティブなWebサイトとして実⾏されます。theftドゥイーノ どちらの場合も、⽐較的パッシブなインターフェイスモジュールとしての
み機能します。USB接続を介してPCからコマンドを受信し、結果を送り返します。

PCを使⽤する場合の慣例として、プログラム内のほとんどのテクノロジはユーザーには隠されたままです。このように
してプログラミングの基本を理解することはできますが、初⼼者が基本的なコンポーネントと⼿順のすべてを理解する
ことはほとんど不可能です。

5.4.1Arduinoのアイデア

Arduinosの元の概念は、基本的な理解を提供することを⽬的としています。Arduinoとそれに由来するものftドゥイーノ
技術的に最も単純なプログラマブルデバイスに属しています。それらが基づいている技術は、コンピューターのマウ
ス、co eeマシン、飲み物のマシンなど、多くの⽇常のデバイスでほとんど⽬に⾒えず、気付かれずに使⽤されているテ
クノロジーに対応しています。

Arduinoで使⽤されるコンポーネントの数と複雑さは可能な限り低く抑えられているため、関⼼のある⼀般の⼈々でもデ
バイス全体を⼤部分⾒ることができます。それにもかかわらず、このタイプの使⽤に必要なスキルは、Scratchまたは
Bricklyを使⽤するためのスキルよりも⼤幅に⾼くなっています。Arduinoを直接使⽤するには、⽣徒と教師からのより多
くのノウハウが必要であり、7年⽣から8年⽣までが賢明です。

学校でのArduino

Arduinoはすでに学校で広く使⽤されています。特に、低価格と個⼈世帯の普及は、参⼊障壁の低下につながります。

ただし、学習曲線は⽐較的急であり、必要なノウハウはタスクの複雑さとともに急速に増加します。Arduinoはベアボー
ドとして販売されており、その電⼦機器と接続は外部の影響からほとんど保護されていません。何よりも、誤って破壊
された部品を低コストで交換できるため、低価格はこれらの⽋点を考慮に⼊れています。最も単純なArduinoは3ユーロ
未満で⼊⼿でき、最初はそれ以上の費⽤はかかりません。

Arduino IDEプログラミング環境は、次のURLから無料でダウンロードできます。 https://www.arduino.cc/en/Main/Software すべて
の⼀般的なPCオペレーティングシステムで利⽤できます。多くのドキュメントと例がインターネット上で無料で⼊⼿できます。
Arduinoのソフトウェアとハ ードウェアは⼀般的なオープンソースライセンスの下で利⽤可能であり、ライセンスなしで共有できま
す。したがって、学校でためらうことなく使⽤でき、ほとんどのドキュメントの無料交換は、学校環境に関連する制限の対象にはなり
ません。

https://www.arduino.cc/en/Main/Software

5.4。ArduinoIDEを使⽤したテキストベースのプログラミング 69

図5.13：Arduino IDE

5.4.2Arduinoと ftドゥイーノ

the ftドゥイーノ せん断技術に向けたArduinoの概念の拡張です。theftドゥイーノ Arduinoのようにプログラムされてい
ますが、電気的および機械的なせん断技術コンポーネントを使⽤して、複雑なモデルの構築を可能にします。

The ftドゥイーノ Arduinoと⽐較して、エントリのハードルを下げるいくつかの簡略化。theftドゥイーノ ユーザーの観
点から、Arduinoの概念の継続として必ずしも理解される必要はありません。むしろ、Arduinoの世界へのより簡単な参
⼊を可能にします。

the ftドゥイーノ ArduinoLeonardoの近くに寄りかかっています。次の機能によってレオナルドを拡張します。

の堅牢性 ftドゥイーノ 堅牢です。Arduinoの接続とは異なり、その接続は短絡防⽌であり、電⼦機器は
閉じたハウジングで保護されています。

の供給電圧 ftドゥイーノ せん断技術では通常の9ボルトで動作し、これらの電圧を供給することもできます
Arduinoは最⼤5ボルト⽤に設計されており、多くのschertechnikエレメントに直接接続されていない可能性がありますが、すべ
ての⼊⼒と出⼒を使⽤してください。

の⼊り⼝ ftドゥイーノ 8つの専⽤アナログ⼊⼒があります I1 それまで I8 および4つのカウンター⼊⼒ C1 それまで C4、 すでに
電圧、抵抗、またはイベント測定⽤に準備されています。⼀⽅、Arduinoには普遍的に使⽤可能な⼊⼒と出⼒があ
りますが、追加の配線によって特定の⽤途に適合させることができます。

の出⼒ ftドゥイーノ 8つの専⽤アナログ出⼒があります O1 それまで O8、 制御するのに⼗分強⼒です
ランプとモーターがあります。ユニバーサル⼊⼒および出⼒は、強⼒な消費者を制御できるようにするために追加
の配線を必要とします。

5.4.3 ftドゥイーノ エントリーレベルのArduinoとして

the ftドゥイーノ 学校でのArduinoの使⽤に簡単かつ問題なく⼊ることができます。⽇常の学校⽣活に⼗分な堅牢性を備
えており、Schertechnikシステムとともに、電気的、電⼦的、または機械的な要件をさらに必要としません。すべての
機械的および電気的接続が接続されており、⼯具は必要ありません。このマニュアルを含め、配信に含まれている多く
の例により、簡単で安全な開始が可能になります。

the ftドゥイーノ 古典的なArduinoの使⽤を準備することができます。からプロトタイプを構築するftドゥイーノ そして
Arduinoは安全なスタートを提供します。その後、古典的なArduino、追加の電⼦機器、および特別に構築されたメカニ
ズムを使⽤した後の実装が、ftドゥイーノ 得られた知識。

第6章

実験

この章の実験は、 ftドゥイーノ。最⼩限の外部コンポーネントを使⽤して、効果または概念を説明します。実験⾃体は完
全なモデルを表すものではありませんが、多くの場合、それらの基礎として役⽴ちます。

複雑なモデルの例は第7章にあります。

6.1ランプタイマー

難易度：
この⾮常に単純なモデルは、ボタンとランプのみで構成され、典型的な階段の吹き抜けの照明の機能をシミュレートし
ます。エネルギーを節約するために、トグルスイッチは単にライトを切り替えるために使⽤されるのではありません。
代わりに、ボタンが使⽤され、ボタンを押すたびに、たとえば10秒間ライトがオンになります。この間にボタンをもう
⼀度押すと、残り時間が10秒に延⻑されます。10秒が経過すると、ライトが消え、ゲームが最初からやり直します。

リセット

3 I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

1
2 O4

O6

I²C

+ 9V + 9V

図6.1：ランプタイマー

6.1.1スケッチ ランプタイマー

次のスケッチは、 ftドゥイーノ-ArduinoIDEのメニューでのサポート
。

ファイル。
例 。FtduinoSimple 。ランプタイマー

1
2
3
4位
5

/ *
LampTimer-ランプタイマー

（c）2017 by Till Harbaum < till@harbaum.org >

https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/LampTimer

6.1。ランプタイマー 71

6⽇
7⽇
8⽇
9

10
11⽇
12⽇
13⽇
14⽇
15⽇
16
17⽇
18⽇
19⽇
20⽇
21
22⽇
23
24
25⽇
26⽇
27
28
29
30⽇
31
32
33
34
35
36
37
38

⼊⼒I1のボタンが押されるとすぐに、出⼒O1のランプが10秒間点灯します。

* /

＃ 含む <FtduinoSimple.h>

uint32_t開始時間 = 0;

//セットアップ機能は、リセットが押されたとき、または//ボードが起動したときに1回実⾏されます。

空所 設定（）{}

//ループ関数は何度も何度も何度も実⾏されます 空所 ループ（）{

// I1のボタンが押されているかどうかをテストします もしも（（
ftduino。input_get（（Ftduino ：：：I1））

// 知らせ
始まる時間

{{
始まる時間

= ミリス （）;

//ランプをオンにします（出⼒HI）
ftduino。output_set（（Ftduino ：：：O1 、 Ftduino ：：：こんにちは）;

}

//有効な開始時刻で、それ以降10秒以上//（10,000ミリ秒）経過しましたか？

もしも（（（ 始まる時間 ！= 0）&&
（（ミリス （）> 始まる時間 + 10000））{ // 忘れ
る

始まる時間
//ランプをオフにします（出⼒をオフにします）
ftduino。output_set（（Ftduino ：：：O1 、 Ftduino ：：：オフ）;

始まる時間
0;=

}
}

スケッチの説明

の機能 ftドゥイーノ ⾮常にシンプルで、シンプルで使⽤できます FtduinoSimple-ライブラリをカバーします（セクショ
ン9.1を参照）。

Arduinoスケッチには空のスケッチが含まれています 設定（）-初期化が不要なため、機能します。すべての機能はルー
プ（）-関数。

上のボタン I1 についてです input_get（） 永続的に照会されます。押すと、デバイスが起動してからの現在の時刻がミ
リ秒単位で表⽰されます。ミリス（） クエリされ、変数内 始まる時間 保存され、ランプがオンになります。ランプがす
でにオンになっている場合、この追加のスイッチオンは何もしませんが、時間値はすでに設定されています始まる時間
現在のものに置き換えられます。

これに関係なく、それは常にテストされています 始まる時間 有効な値と、現在のシステム時刻がそこに保存されている
値からすでに10秒（10,000ミリ秒）を超えているかどうかが含まれます。この場合、最後にボタンを押してランプをオ
フにし、の値が 始まる時間 ゼロに設定すると、無効としてマークされます。

タスク1：20秒

各キーを押した後、ランプが20秒間点灯していることを確認してください。

解決策1：

32⾏⽬では、ランプが20000ミリ秒、つまり20秒間オンのままになるように、値10000を値20000に置き換える必要があ
ります。

31
32

もしも（（（ 始まる時間 ！= 0）&&
（（ミリス （）> 始まる時間 + 20000））{

72 第6章実験

演習2：延⻑なし

ランプがすでに点灯しているときにボタンをもう⼀度押すと、残り時間が10秒に戻らないことを確認してください。

解決策2：解決策2：

23⾏⽬の割り当ての前に、追加のクエリを挿⼊する必要があります。これは、以前に何も設定されていない場合にのみ新しい
値を設定します。両⽅の⾏を合わせると、次のようになります。

23
24

もしも（（始まる時間
始まる時間

== 0）
ミリス （）;=

専⾨家の仕事：

ランプの代わりに発光ダイオードを接続する場合（発光ダイオードの⾚い接続を出⼒に接続する必要があります O1）、 次に、
ライトが実際にオフになっているはずのときに、何か奇妙なことに気付くでしょう。出⼒はしますが、発光ダイオードはまだ
⾮常に弱く輝いています。 オフ は。どうして

説明

2つの接続の間に電圧差がある場合、電流はランプまたは発光ダイオードを流れます。⼀⽅の接続をアースまたは0ボル
トにしっかりと接続し、もう⼀⽅の接続は開いており、ftDuinoのコンポーネントから電圧が供給されていません。機械
式スイッチとは異なり、imftドゥイーノ いわゆる出⼒ドライバとして使⽤される半導体部品は完全ではありません。⾮
常に⼩さないわゆるリーク電流が9V電源電圧に流れ込みます。この⼩さな電流は、ランプを光らせるのに⼗分ではあり
ません。しかし、はるかに効率的な発光ダイオードを⾮常に簡単に点灯させるには⼗分です。

それについて何か変更できますか？はい！出⼒を完全に接続しないままにする代わりに、ftDuinoの出⼒ドライバーに出
⼒を永続的にグランド（0ボルト）に切り替える必要があることを伝えることができます。その後、発光ダイオードの両
⽅の接続がしっかりと接地され、漏れ電流の影響がなくなります。これを⾏うには、定数が36⾏⽬にある必要がありま
すオフ 終えた LO 交換してください。 LO 低、英語低を表し、この場合は0ボルトを意味します。時間が経過すると、
LEDが完全に消灯します。

36 ftduino。output_set（（Ftduino ：：：O1 、 Ftduino ：：：LO）;

ただし、ftDuinoをオンにした直後は、LEDが点灯し続けます。おそらく、それをどのように変更できるかを⾃分で理解するでしょ
う。ヒント：以前は使⽤されていなかった設定（）-関数が役⽴つ可能性があります。

これについてはセクション6.8で詳しく説明しています。

6.2緊急停⽌

難易度：
緊急停⽌スイッチは⼈命を救うことができ、簡単なことのようです。ボタンを押すと、問題のマシンのスイッチがすぐ
にオフになります。モデルには、出⼒にファンを備えたXSモーターがありますM1 マシン⼊⼒のボタン I1 緊急停⽌ボタ
ンを形成します。

6.2.1スケッチ 緊急停⽌

1
2
3
4位
5
6⽇

/ *
EmergencyStop-緊急停⽌

（c）2017 by Till Harbaum < till@harbaum.org >

⾮常停⽌ボタンが押されるとすぐにファンをオフにします

https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/EmergencyStop

6.2。⾮常停⽌スイッチ 73

リセット

3 I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

1
2 O4

O6

I²C

+ 9V + 9V

図6.2：緊急停⽌

7⽇
8⽇
9

10
11⽇
12⽇
13⽇
14⽇
15⽇
16
17⽇
18⽇
19⽇
20⽇
21
22⽇
23
24
25⽇
26⽇
27
28
29
30⽇
31
32

が動作します。
* /

＃ 含む <FtduinoSimple.h>

//システムの起動時にセットアップ機能が1回実⾏されます 空所 設定（）{

//システムの起動時にファンをオンにします ftduino。motor_set（（
Ftduino ：：：M1 、 Ftduino ：：：左）;

//内部の⾚いLEDの出⼒をアクティブにします pinMode（（
LED_BUILTIN 、 出⼒）; //そしてLEDをオフにします digitalWrite
（（LED_BUILTIN 、 低い）;

}

//ループ関数は何度も何度も何度も実⾏されます 空所 ループ（）{

// I1のボタンが押されているかどうかをテストします もしも
（（ftduino。input_get（（Ftduino ：：：I1））{

//モーターにブレーキをかけます

ftduino。motor_set（（Ftduino ：：：M1、 Ftduino ：：：ブレーキ
）; //内部の⾚いLEDをオンにします digitalWrite（（LED_BUILTIN 、
⾼い）;

}
}

スケッチの説明

スケッチは⾮常に短くシンプルです。の中に設定（）-スケッチが開始されると、モーターは15⾏⽬で開始されます。さ
らに、の⾚い内部発光ダイオードftドゥイーノ 後で使⽤できるように有効にしましたが、今は省略しました。

の中に ループ（）-緊急停⽌ボタンが閉じられているかどうかは、26⾏⽬で機能が永続的に照会されます。この場合、
モーターは28⾏⽬ですぐに停⽌し、30⾏⽬で⾚⾊発光ダイオードがオンになります。エンジンは意識的にブレーキ 代わ
りに停⽌しました オフ。 このように、モーターは短絡され、積極的にブレーキがかけられますが、そうでない場合、
モーターはゆっくりと惰⾛し、緊急時に危険になります。

タスク1：ケーブルの断線

緊急ボタンは多くのマシンで利⽤できます。幸いなことに、それらが実際に必要になることはめったにありません。こ
れには、⾮常停⽌ボタンに問題がある場合に誰も気付かないという⽋点があります。多くの場合、ケーブルはボタン⾃
体よりも脆弱であり、⽇常の作業でケーブルが損傷する可能性があります。多くの場合、ケーブルを⾒てもわかりませ
ん。たとえば、シースに損傷がないように⾒えても、過度のストレスのために内部の銅導体が遮断されています。その
結果、いわゆるケーブルが断線します。

74 第6章実験

ケーブルを引き裂く必要はありません。ボタンを接続するケーブルのプラグの1つを接続すれば⼗分です。ftドゥイーノ
接続し、引き出します。⾮常停⽌ボタンが機能しなくなり、機械を停⽌できなくなります。危険な状況。

解決策1：

この問題の解決策は驚くほど簡単です。⾮常停⽌ボタンをクローザーとして接続しました。これは、ボタンが押された
ときに接点が閉じられることを意味します。Schertechnikボタンをオープナーとして使⽤することもできます。その
後、接点はアイドル状態で閉じられ、ボタンが押されると開きます。

3 3
1 1
2 2

図6.3：ケーブル破損防⽌緊急停⽌オープナー

現在のスケッチでは、ボタンがすぐに閉じていると認識されるため、ケーブルが断線した場合、マシンはすぐに緊急状
態になります。そのため、スケッチでもロジックを逆にする必要があります。これは、26⾏⽬の次の変更で発⽣しま
す。

26⽇ もしも（！ ftduino。input_get（（Ftduino ：：：I1））{

違いを確認するには注意深く⾒る必要があります。開き括弧の後ろに感嘆符があります。感嘆符は、Cプログラミング⾔
語では式の論理否定を表します。ボタンが押されたときに条件が実⾏されるようになりましたいいえ 閉まっています。
この変更後、マシンは元の動作とまったく同じように動作するはずです。⼩さな変更が1つあります。緊急停⽌ボタンの
プラグの1つを抜くと、マシンはすぐに停⽌します。これは、ケーブルが断線した場合にも発⽣します。

このような回路は英語ではフェイルセーフと呼ばれます。何かが壊れると、回路は安全な状態に変わります。
schertechnik 3Dプリンターは、たとえば、この回路をリミットスイッチに使⽤します。ここでケーブルが引き裂かれた
場合、プリンターはモーターを軸のエンドストップに押し付けません。代わりに、リミットスイッチへの接続が中断さ
れるとすぐにプリンタは完全に動作を拒否します。

専⾨家の仕事：

ケーブルを単に遮断することはできません。また、ケーブルがひどく絞られて、内部導体が互いに接触することもあり
ます。これはそれほど頻繁には発⽣しませんが、現実的なリスクでもあります。

この場合、改良された⾮常⽤回路は保護されず、⾮常停⽌ボタンは再び機能しません。したがって、接続の閉じた状態
も開いた状態も良好として認識されないバリアントが必要です。

解決：

この場合、解決策はもう少し複雑です。ここで、少なくとも3つの状態（正常、中断、および短絡）を区別する必要があ
ります。純粋なスイッチング⼊⼒は、閉じた状態と開いた状態の2つを区別することしかできません。

解決策は、⼊⼒のアナログ機能を使⽤することです。これは、たとえば、ボタンで直接⾏うことができます100 Ω- ライ
ンに抵抗を統合します。

通常、ボタンは閉じており、⼊り⼝にあります I1 測定する抵抗は 100 Ω。 回線が遮断されると、抵抗は無限に⾼くなり
ます。そして、ラインが短絡している場合、抵抗は近いです 0 Ω。 機械は、抵抗がに近い場合にのみ実⾏が許可されま
す 100 Ω は。使⽤される抵抗の正確な値は製造公差の影響を受け、閉じたボタンとその接続ケーブルも⾮常に低い抵抗
を持っているため、ある程度の公差が必要です。これは、測定される総抵抗に影響します。

6.3。パルス幅変調 75

3
1
2

図6.4：ケーブルの断線や短絡に対する安全な緊急停⽌

なぜ抵抗器をボタンの近くに取り付ける必要があるのですか？彼が近くにいる場合はどうなりますかftドゥイーノ を使⽤
すると、抵抗器とボタンの間のケーブルで短絡が発⽣しますか？

6.3パルス幅変調

難易度：
さまざまな明るさでランプを輝かせたい場合、または制御可能な速度でモーターを実⾏したい場合は、ランプまたは
モーターのエネルギー消費に影響を与える⽅法が必要です。これを⾏う最も簡単な⽅法は、調整可能な電圧源を使⽤す
ることです。電圧が⾼いとランプのエネルギー消費量が増加し、ランプが明るく点灯してモーターが速く回転します。
電圧が低いとランプが暗くなり、モーターの回転が遅くなります。のアナログ出⼒の場合ftドゥイーノ これは、ランプと
モーターを完全な暗闇または停⽌状態から最⼤の明るさまたは速度まで操作できるようにするために、0〜9ボルト（ア
ナログ）の間で連続的に調整可能な電圧を出⼒できる必要があることを意味します。

可変電圧の⽣成は、技術的に⽐較的複雑です。ただし、同様の結果を得る簡単な⽅法があります。電圧を下げる代わり
に、電圧は⾮常に短い間だけ定期的にオンになります。たとえば、電圧がオンになっている時間は50％で、オフになっ
ている時間は50％の場合、エネルギーの半分だけが合計時間に転送されます。結果をランプの点滅として認識するか、
モーターの途切れとして認識するか、またはランプが単に半分の明るさで点灯し、モーターが半分の速度で回転するか
どうかは、電圧のオンとオフを切り替える速度によって異なります。

リセット

3

2

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

1
O4

O6
3

2
1

I²C

+ 9V + 9V

図6.5：パルス幅変調

6.3.1スケッチ Pwm

1
2
3
4位
5
6⽇
7⽇
8⽇
9

10
11⽇
12⽇

/ *
Pwm-パルス幅変調

（c）2017 by Till Harbaum < till@harbaum.org >
* /

＃ 含む <FtduinoSimple.h>

uint16_tスイッチング時間 = 8192; // 8192は1/2秒のオンとオフに対 応します

//セットアップ機能は、リセットが押されたとき、または//ボードが起動したときに1回実⾏されます。

https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/Pwm

76 第6章実験

13⽇
14⽇
15⽇
16
17⽇
18⽇
19⽇
20⽇
21
22⽇
23
24
25⽇
26⽇
27
28
29
30⽇
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

空所 設定（）{}

//指定された時間待機します。「時間」値8192は、0.5秒//に対応する必要があります。したがって、500000/8192マイクロ
秒の「時間」を待つ必要があります 空所 待つ（（uint16_t時間）{

その間（（時間 -）
_delay_us （500000/8192）;

}

//ループ関数は何度も何度も何度も実⾏されます 空所 ループ（）{

静的 uint8_t on_off = false; 静的 uint8_t i1=false
、 i2=false;

//現在の出⼒のオン/オフ状態// I1およびI2のボタンの最後の状
態

// I1のボタンが押されていますか？ もしも（（
ftduino。input_get（（Ftduino ：：：I1））

//以前はボタンが押されていませんでしたが、//現在の切り替え時間は8192未満
ですか？
もしも（！i1 &&（切り替え時間 <8192））{

//次に切り替え時間を2倍にします 切り替え時間
* = 2;
//キーがバウンスする場合に備えてミリ秒待機します _delay_ms （1）;

{{

}
// I1のキーが現在押されていることに注意してください i1 =

それ以外
// I1のキーが現在押されていないことに注意してください i1 = false;

true;
}

// I2のボタンが押されていますか？ もしも（（
ftduino。input_get（（Ftduino ：：：I2））{

//以前はボタンが押されていなかったので、//現在の切り替え時間は1より⼤きい
ですか？
もしも（！i2 &&（切り替え時間 > 1））{

//次に切り替え時間を半分にします 切り替え時
間 / = 2;
//キーがバウンスする場合に備えてミリ秒待機します _delay_ms （1）;

}
// I2のキーが現在押されていることに注意してください i2 =

それ以外
// I2のキーが現在押されていないことに注意してください i2 = false;

true;
}

// on_off変数の状態に応じて、出⼒O2をオンまたはオフに切り替えます もしも（（オンオフ）。

//現在のon_off状態がtrueの場合、出⼒をオンにします ftduino。output_set（（Ftduino ：：：O1 、 Ftduino
：：：こんにちは）; それ以外

//現在のon_off状態がfalseの場合、出⼒をオフにします ftduino。output_set（（Ftduino ：：：O1 、 Ftduino
：：：オフ）;

//現在の切り替え時間を待つ 待つ（（切り替え
時間）;

// on_off状態を変更します オンオフ =！オ
ンオフ;

}

スケッチの説明

スケッチは出⼒を切り替えます O1 の中に ループ（）-60⾏⽬から71⾏⽬で連続してオンとオフを切り替えます。変数の
値に応じてオンオフ 62⾏⽬の出⼒は9ボルトに設定されています（こんにちは） 65⾏⽬でスイッチまたはオフになって
います（電源から切断されています）。71⾏⽬では、ループ（）-変数の状態の関数 オンオフ 各サイクルで出⼒が交互に
オンとオフに切り替わるように変更されました。

オン/オフを変更するたびに、68⾏⽬に待機があります。変数の待機時間はどのくらいですか切り替え時間 彼⼥はで待ち
時間を与えます 1/8192 0.5秒。これは関数で⾏われます待つ （） 19⾏⽬ 500000/8192

6.3。パルス幅変調 77

変数のようにマイクロ秒待機 切り替え時間 指定。なぜ0.5秒？サイクルごとに2回待機するため、1回は出⼒がオンに
なっているとき、もう1回はオフになっているときです。0.5秒待つと、サイクル全体が1秒間続き、出⼒は1秒に1回0.5
秒間オンになります。出⼒は次の周波数で変化します1/Sec。 またはヘルツ。

ボタンを押すことで I1（28⾏⽬）は変数の値にすることができます 切り替え時間 2倍になり（33⾏⽬）、ボタンを1回押
すだけで I2（44⾏⽬）半分（49⾏⽬）。スイッチング時間の値は、1（47⾏⽬）から8192（31⾏⽬）の範囲に制限され
ています。ここで、この奇妙に曲がった値8192が選択された理由が明らかになります。8192は2の累乗であるため（213

⽇）は、値を丸め誤差なしで1に分割してから、再度乗算することができます。

ボタンはオンとオフを切り替えるときにのみ照会されるため、点滅する周波数が変わるまで、低周波数でボタンをしば
らく押し続ける必要があります。

スケッチが始まると、ランプが1秒に1回、0.5秒間点灯します。ボタンを（⻑押し）押すI2 待ち時間が半分になり、ラン
プが1秒間に2回点滅します。ボタンを2回押すと、4回点滅します。6回押すと、1秒間に32回点滅しますが、これはわず
かなちらつきとしてのみ認識され、7回押すと64回点滅します。⼈間の⽬は約50ヘルツを超える周波数を解決できなくな
り、ランプは半分の明るさで光っているように⾒えます。周波数をさらに上げても、認識できる効果はありません。

演習1：遅いランプ

この構造では、動きが鈍いのは⼈間の⽬だけではありません。ランプも遅いです。フィラメントが熱くなり、ランプが
点灯するまでに時間がかかります。また、フィラメントが⼗分に冷えてランプの点灯が⽌まるまでにも時間がかかりま
す。

発光ダイオードは⽩熱灯よりもはるかに⾼速です。それらの中の何も加熱または冷却する必要はありません;代わりに、
光は発光ダイオードの半導体材料の光電気効果によって直接⽣成されます。ランプの代わりに発光ダイオードを接続し
た場合（出⼒への⾚いマークの付いた接続O1）、 その後、動作は最初は同じように⾒えますが、64ヘルツの周波数か
ら、発光ダイオードは半分の明るさで均⼀に輝いているように⾒えます。ただし、多くの⼈は依然として64 Hzをわずか
なちらつきとして認識しており、100Hzからのみ本当に常に無料のディスプレイについて話します。

発光ダイオードが動いているとき、発光ダイオードのちらつきはこれらの周波数でまだ観察することができます。少し
⻑いケーブルを使⽤して、発光ダイオードを⾃由に動かし、少し暗い環境ですばやく前後に動かすと、⼀連の中断され
たライトストリップの印象が⽣まれます。

図6.6：耕起発光ダイオードの急速な動きのパターン

PWM周波数が⾼いほど、可視光ストリップは短くなります。

この実験は、ランプを使⽤して繰り返すこともできます。ランプの慣性により、連続した光の帯しか⾒ることができま
せん。ただし、光るランプの繊細なフィラメントは振ると壊れやすいので、あまり乱暴に進めないでください。この点
でも、発光ダイオードは頑丈であり、強い振動によっても感動することはできません。

78 第6章実験

タスク2：エンジンからの⾳

モーターも低速で、どの速度でもオン/オフ信号を追跡できません。⾮常に低いPWM周波数でも、モーターは半分の速度
で連続的に回転します。聞こえる主な騒⾳はエンジンの運転騒⾳です。

ただし、モーターを⼿で持つなどして機械的にブロックすると、ランニングノイズが抑制され、別の効果が聞こえるよ
うになります。モーターのコイルがスピーカーのように機能し、モーターがブロックされたときにPWM周波数を聞くこ
とができます。 。PWM周波数を変更すると、はっきりと聞こえるピッチの違いが⽣じます。

PWM周波数が⾼いほど、ブロックされたモーターで聞こえる⾳が⼤きくなります。

演習3：⾼いPWM周波数の⽋点

ランプの場合、周波数が⾼くなるとフリッカーが減少するため、PWM周波数が⾼くなることは⾮常に有利であるように思われ
ます。ただし、モーターに悪影響が⾒られる場合があります。

モーターが⾃由に回転している場合、モーターの回転⾳のピッチは回転速度に関係しますが、前のタスクのPWMノイズ
は後部座席になります。モーターの回転が速いほど、ランニングノイズの周波数が⾼くなり、その逆も同様です。

PWM周波数を上げると、モーターから放出されるトーンの周波数がわずかに低下します。明らかに、PWM周波数が⾼く
なると遅くなります。この効果は、モーターがいわゆる誘導負荷を表すという事実によって説明できます。それは本質
的にコイル、いわゆるインダクターで構成されています。誘導性負荷の抵抗は、印加される交流電圧の周波数に依存し
ます。そして、PWMによって⽣成されるオン/オフ信号は他に何もありません。周波数が⾼いほど、コイルの抵抗が⾼く
なり、コイルを流れる電流が少なくなります。

出⼒電圧を平滑化し、この影響を軽減することは技術的に可能です。このタイプの平滑化は、使⽤されるPWM周波数と
モーターの消費電流によって異なります。また、出⼒の⼀般的なスイッチング動作にも影響します。対応する平滑化の
使⽤ftドゥイーノ したがって、これは出⼒のユニバーサルユーザビリティを制限するため、問題外です。

したがって、PWM周波数を選択する際の⽬的は、ランプのプラウやモーターのスタッターを防ぐのに⼗分⾼い周波数で
すが、モーター巻線の誘導抵抗を最⼩限に抑えるために可能な限り低い周波数です。100〜200HzのPWM周波数はこれら
の条件を満たす。

PWM⽐に応じたモーター速度

モーター速度は、パルス幅変調中のフェーズインとフェーズアウトの⽐率によって影響を受ける可能性があります。以
前の試みでは、オンフェーズとオフフェーズはそれぞれ同じ⻑さでした。2相の⽐率を変えることで、ランプの明るさや
モーターの速度を制御することができます。PWM周波数は⼀定に保つことができます。

0％

25％

50％

75％

100％

図6.7：0から100％までの選択されたPWM⽐

スイッチオフフェーズと⽐較してスイッチオンフェーズが⻑いほど、ランプが明るく輝き、モーターの回転が速くなり
ます。適切な測定オプションがないため、ランプの明るさとPWM⽐の正確な関係を判断するのは簡単ではありません。
ただし、いわゆるエンコーダモーターには、速度測定⽤のオプションが組み込まれています。TXTエンコーダーモーター
の場合、これらのエンコーダーは1回転あたり63の信号パルスを⽣成します。

6.4。ステッピングモーター制御 79

軸。のカウンタ⼊⼒でエンコーダ信号を評価することによってftドゥイーノ モーターの速度を決定します。

リセット

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

O4

O6

I²C

+ 9V + 9V

図6.8：PWM依存速度測定⽤のTXTエンコーダモーターの接続

例
100％の⾼さで、⼊り⼝の1つを⼀度に1秒間継続的に測定します C1 適⽤されたインパルス。これらは変換され、1分あ
たりの回転数で出⼒されます。これが完全なライブラリの出番ですFtduino これは、PWM信号の実際の⽣成に使⽤され
ます。PWM信号の⽣成は完全にバックグラウンドで⾏われるため、スケッチ⾃体はモーターを始動してから1秒間待機す
るだけです。

ファイル。例 。Ftduino 。PwmSpeed PWMのオン/オフ⽐を0からゆっくりと調整します

この⽅法で取得したデータを、ArduinoIDEのメニューにあるいわゆるシリアルプロッタにフィードすると、
最後に、測定結果を明確に視覚化することができます。ツール 。シリアルプロッタ

図6.9：PWM⽐に応じたTXTエンコーダモーターのアイドル速度

PWM⽐は横軸にプロットされ、左端から永久に右端から永久に始まります。測定された速度は、縦軸に毎分回転数で表
⽰されます。アイドリング時に関係が線形ではないことがわかります。信号が約25％の時間だけオンになっている場
合、最⼤エンジン速度の90％に達します。

たとえば、モーターに⼀定の負荷をかけることで、この曲線と負荷がどのように変化するかを確認できます。

6.4ステッピングモーター制御

難易度：
⼀般的な電気モーターは、通常おもちゃで使⽤されるため、いわゆる⾮同期モーターです。これらのモーターは通常DC
電圧が供給されますが、電圧が印加されるとすぐに作動するという特徴があります。

80 第6章実験

回転を開始します。速度は外部の影響に間接的にのみ依存し、モーターは可能な限り速く回転します。このタイプの
モーターは、多くのアプリケーションに⾮常に適しています。モデルカーは、それ以上の制御なしでモーターを駆動
し、これらのモーターで可能な限り迅速に運転することができます。Schertechnikもほとんどの場合これらのモーター
を使⽤し、ftドゥイーノ それらをそれぞれ1つのモーター出⼒に直接接続することができます M1 それまで M4 接続す
る。

しかし、このモーターファミリーが⾮常に⼤きな弱点を⽰すアプリケーションがあります。単純な⾮同期モーターで
は、正確な速度を達成したり、正確な位置に移動したりすることは⾮常に困難です。schertechnikのエンコーダモー
ターは、追加のハードウェアでこれを可能にしようとします。ただし、この⼿順には制限もあります。特に、回転⽅向
を検出できないSchertechnikエンコーダーモーターの場合はそうです。

図6.10：17HS13ステッピングモーター ftドゥイーノ

モーターの正確で再現性のある動作が重要なタスクには、いわゆるステッピングモーターなど、同期して動作するモー
ターがあります。この今⽇の⼀般的なアプリケーションは、スキャナーと3Dプリンターですが、過去に使⽤されたフ
ロッピーディスクドライブと初期のハードドライブもあります。ステッピングモーターの使⽤は、エンドユーザーがそ
のようなモーターで⾳楽を作成するために使⽤する特徴的な動作ノイズによっても認識できます。1。

リセット

3

2

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

1
O4

O6
3

2
1

I²C

+ 9V + 9V

図6.11：ステッピングモーターの ftドゥイーノ

⼀般的なステッピングモーターは、電磁⽯に囲まれた永久磁⽯で作られた回転可能な電機⼦で構成されています。永久
磁⽯は周囲の磁場に応じて整列します。緊張のない中で

1フロッピー⾳楽というキーワードでインターネット上で簡単に⾒つけることができます

6.4。ステッピングモーター制御 81

状態、モーターの軸は⽐較的簡単に回転させることができます。顕著な抵抗は、電圧がない場合でも電磁⽯の鉄⼼に永
久磁⽯が引き付けられるという事実に起因します。

図6.12：ステッピングモーターの簡略化されたスキーム

図に⽰す簡略化されたステッピングモーターには、永久磁⽯と2つの電磁⽯があります。実際のステッピングモーターに
は通常2つ以上のコイルがあり、電機⼦も2つ以上の磁極を形成します。この単純化は、機能原理に影響を与えません。

従来のいわゆるバイポーラステッピングモーターには、2つの電磁⽯のそれぞれに2つずつ、合計4つの接続があります。
電磁⽯は電圧を印加することによって磁化されます。その結果、アンカーはそれに応じて整列します。印加電圧の極性
により、電磁⽯の磁場の⽅向が決まります。

6.4.1フルステップ制御

両⽅のコイルが常に通電されている場合、2つの電磁界には4つの異なる⽅向があり、アーマチュアは4つの異なる位置に
なります。対応する反復信号シーケンスが電磁⽯に適⽤されると、電機⼦は信号に追従して回転します。変化する磁場
に正確に追従し、印加された信号パターンと同期して回転します。このようにして、モーターの速度と位置を正確に予
測することができます。すべてのコイルが常に通電されているため、サイクルが正確に4つの状態を通過する場合、1つ
はフルステップ制御について説明します。

A。 A。 A。 A。

L1 L1 L1 L1
B。 B。 B。 B。

L2 L2 L2 L2
A。 B。 A。 B。 A。 B。 A。 B。

L1.A

L1.B

L2.A

L2.B

図6.13：ステッピングモーターのフルステップ制御

対応する信号パターンを継続的に⽣成するスケッチは次のようになります。
その間 （1）{

ftduino。motor_set（（Ftduino ：：：M1 、
遅れ （5）;
ftduino。motor_set（（Ftduino ：：：M2 、
遅れ （5）;
ftduino。motor_set（（Ftduino ：：：M1 、
遅れ （5）;
ftduino。motor_set（（Ftduino ：：：M2 、

Ftduino ：：：左）;

Ftduino ：：：左）;

Ftduino ：：：正しい）;

Ftduino ：：：正しい）;

82 第6章実験

遅れ （5）;
}

完全な例はArduinoIDEにあります ファイル。例 。FtduinoSimple 。ステッピングモーター 。

⽰されている簡略化されたステッピングモーターは90変化しますが°° 回転し、したがって4つのステップの後に完全な回転を完
了しました、実際のステッピングモーターはより⾼い解像度を持っています。1.8のステップ⾓が⼀般的です°。 そのようなエ
ンジンが完全に回転したのは、200ステップ後になってからです。⽰されているリストでは、各ステップの後に5ミリ秒待機し
ているため、1秒あたり正確に200ステップが⽣成されます。⼀般的な1.8°-モーターは毎秒1回正確に回転します。

の実験のために ftドゥイーノ の9V出⼒に接続されているモーターを選択する必要があります ftドゥイーノ 互換性があります。ここで
使⽤されている17HS13は、12Vの動作電圧⽤に設計されていますが、せん断技術で⼀般的な9ボルトでも確実に動作します。
schertechnikプロッタ30571のモーター2 1985年から6ボルト⽤に設計されました。これらのエンジンをオンにする必要がありますft
ドゥイーノ 動作する場合は、通常の9ボルトではなく6ボルトを供給する必要があります。

プロセスの図の下半分には、モーターの4つの接続での信号プロセスが含まれています。信号曲線は、結果として得られ
るメグネットフィールドの⽅向に応じて⾊で強調表⽰されます。磁⽯の2つの接続が常にまったく逆の⽅法で制御され、
信号が変化すると磁場が変化することがわかります。⽰されている⾊は、アーマチュアに⾯している電磁⽯の側⾯の極
性に対応しています。

6.4.2ハーフステップ制御

ステッピングモーターをいわゆるハーフステップモードで制御すると、より⾼い⾓度分解能を実現できます。この場
合、信号サイクルは4つではなく、8つのステップで構成されます。2番⽬のステップごとに、2つの電磁⽯の1つがオフに
なり、アーマチュアが残りの磁⽯とのみ位置合わせされます。結果として得られる4つの中間状態は、結果として得られ
る⾓度から、フルステップ制御の4つの状態の間に正確に配置されます。したがって、モーターは2倍の⾓度を制御し、
それに応じてより正確に配置することができます。

A。 A。 A。 A。 A。 A。 A。 A。

L1 L1 L1 L1 L1 L1 L1 L1
B。 B。 B。 B。 B。 B。 B。 B。

L2 L2 L2 L2 L2 L2 L2 L2
A。 B。 A。 B。 A。 B。 A。 B。 A。 B。 A。 B。 A。 B。 A。 B。

L1.A

L1.B

L2.A

L2.B

図6.14：ステッピングモーターのハーフステップ制御

この図は、電磁⽯を制御するための2つの信号が同時に変化しなくなったことを⽰していますが、両⽅の信号が同じレベ
ルにあるオフセットがあります。このとき、磁⽯には電圧がかかっておらず、磁場もありません。したがって、現時点
では信号曲線はカラーで強調表⽰されていません。

ハーフステップ制御の⽋点は、1つの電磁⽯のみがアクティブな場合にモーターの電⼒が低下することです。

タイマー割り込み作動ステッピングモーター

前のセクションで使⽤したステッピングモーター制御のスケッチには、1つの⼤きな利点があります。それは明らかで
す。ただし、問題は、モーターの制御には永続的な信号変更が必要であるため、モーターが回転するように、スケッチ
内のモーター機能を永続的にアクティブにする必要があることです。スケッチは、ほとんどすべての時間をさまざまな
場⾯で費やしています。遅れ （） -次の信号変更を待つ関数呼び出し。最⼤

2 schertechnikデータベース： https://ft-datenbank.de/tickets?fulltext=30571

https://ft-datenbank.de/tickets?fulltext=30571

6.4。ステッピングモーター制御 83

短所：スケッチがモーターを操作している間は、他のことはほとんどできません。この単純なスケッチでは、おそらく
異なる速度で2番⽬のモーターを同時に実⾏することはほとんど不可能です。

同じ問題が開発中に発⽣しました ftドゥイーノ の他のコンポーネントと ftドゥイーノ アナログ⼊⼒の評価、モーター出
⼒のPWM速度制御、およびカウンターの評価にも、マイクロコントローラーからの絶え間ない積極的な協⼒が必要で
す。それにもかかわらず、ユーザーは⾃分のスケッチでこのための関数を提供する必要はありません。これらのことは
すべて、バックグラウンドでほとんど気付かれずに発⽣します。このようなバックグラウンド機能は、ステッピング
モーターの動作にも望ましいでしょう。

ATmega32u4のようなマイクロコントローラー ftドゥイーノ マイクロプロセッサ（実際の処理装置）と、USBインター
フェイス機能などのさまざまな追加ハードウェアコンポーネントで構成されています。特に、ATmega32u4にはいわゆ
るタイマーがいくつかあります。タイマーは、実際のプロセッサとは独⽴して動作するクロックと考えることができま
す。ソフトウェアを使⽤して、時計の実⾏速度と特定の時間に特定のことが発⽣するかどうかを判断できますが、実際
の時間の進⾏は⾃動的に⾏われ、プロセッサで実⾏されたスケッチによる追加のアクションはありません。このような
タイマーによって定期的にトリガーできるものの1つは、いわゆる割り込み要求です。プロセッサに割り込みを発⽣さ
せ、

このタイプの割り込みは、たとえばステッピングモーターの制御に最適です。ステッピングモーターを移動する場合、
たとえば1秒あたり200ステップの場合、プロセッサーが5ミリ秒ごとに中断されるようにタイマーをプログラムできま
す。この中断の間、プロセッサはモーターの磁場をさらに1ステップ回転させてから、通常のタスクに戻る必要がありま
す。

次のコードセグメントは、ATmega32u4のタイマー1をプログラムして、いわゆる割り込みサービスルーチンが正確に5ミリ秒
ごとに実⾏されるようにします。モーターは、このルーチン内の適切なプログラムコードを使⽤して、スケッチのメインプロ
グラムとは完全に独⽴して動作させることができます。

1
2
3
4位
5
6⽇
7⽇
8⽇
9

10
11⽇
12⽇
13⽇
14⽇
15⽇
16
17⽇
18⽇

＃ 含む <FtduinoSimple.h>

//いわゆる割り込みサービスルーチン（ISR）は//スケッチ⾃体では実⾏されませんが、//
ATmega32uのハードウェアは//タイマーイベントに基づいて実⾏をトリガーします

ISR（（TIMER1_COMPA_vect）{
//この関数は5msごとに実⾏されます。//たとえば、ステッピングモー
ターの磁場が//さらに回転する可能性があります。

// 。。。
}

空所
// ATmega32u4のタイマー1の構成、//レジスタの正確な説明は第14章にありま
す//

//

設定（）{

データシートの：
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel -7766-8-bit -AVR -ATmega16U4 -32

U4_Datasheet.pdf
19⽇
20⽇
21
22⽇
23
24
25⽇
26⽇
27
28
29
30⽇
31
32
33
34
35
36
37
38
39
40
41

//タイマー1は、OCR1Aを上限として//いわゆるCTCモードに切り替える必要があります。タイ
マーは1 / 256CPUサイクルで動作します。//これは16MHzであるため、タイマーは62.5kHzで動
作します。//モーターを毎秒200ステップ回転させるには、//タイマー312（62500/200）がカ
ウントステップを実⾏したときに、モーターは常にステップを実⾏する必要があります。

TCCR1A = 0;
TCCR1B =（1 <<WGM12）| （1 <<CS12）; // 1/256 F_CPU = 62.5kHzでタイマー1を開始します TCCR1C = 0;

// 6240/200カウンターステップに達したときにイベントをトリガーします TCNT1

OCR1A
=
=

0;
62500/200;

//ターゲットステップに達したときにイベント⽣成をトリガーします TIMSK1 =
（1 <<OCIE1A）;

}

空所 ループ（）
//メインルーチンは必要に応じて使⽤でき、//タイマー1割り込みは//独⽴して
定期的に実⾏されます

{{

84 第6章実験

42 }

完全な例は以下にあります
主にタイマー1の提案された使⽤法。たとえば、2番⽬のモーターは、バックグラウンドでタイマー3によって制御され、
既存のモーターとは独⽴して、スケッチのメインプログラムとは独⽴して制御されます。たとえば、いわゆるプロッタ
は、セクション7.5に⽰すように、2つのステッピングモーターを使⽤して⾮常にエレガントに実装できます。

ファイル。例 。FtduinoSimple 。StepperMotorSrv 。それは等しい

6.5サーボモーター制御

難易度：

セクション6.4の通常のDCモーターとステッピングモーターに加えて、第3のタイプのモーター、いわゆるサーボがあ
り、これは主にモデル構築で使⽤されます。schertechnikはアイテム番号132292でサーボを販売しています3。

技術的には、サーボは単純なDCモーターと単純な電⼦機器で構成されています。測定機構は、サーボの電流制御値（⾓
度）をこれらの電⼦機器に常に報告します。電⼦機器はこれを外部設定値と⽐較し、必要に応じてモーターを再調整し
ます。サーボは、回転⾓で外部設定値に従います。

したがって、サーボには3芯接続ケーブルがあります。電圧供給には2本のワイヤーが使⽤され（⾚= 6ボルト、茶⾊=
アース）、3本⽬のワイヤー（オレンジ）が設定値を送信します。市販のサーボを使⽤できますが、Schertechnikサーボ
132292も使⽤できます。4位 540585から5-PLUSBluetoothコントロールセット。また、Schertechnik RC-Servo 302756⽇

1983年からこのように使⽤できるはずです。ただし、これはまだ確認されていません。

リセット リセット

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

O4

O6

O4

O6 7806

I²C I²C

+ 9V + 9V + 9V + 9V

（a）による供給 ftドゥイーノ （b）7806コントローラーからの供給

図6.15：サーボの接続 ftドゥイーノ

サーボは6ボルトの動作電圧⽤に設計されており、多くの場合5ボルトで動作するため、内部の5ボルトからの供給 ftドゥ
イーノ 私の上に。2図6.15（a）に⽰すようにC接続が可能です。サーボの内部電源を供給するためにサーボの消費電流が
100mAを超えてはならないため、この電源には注意が必要です。ftドゥイーノ 過負荷にならないように。ほとんどの
サーボは明らかにこの値を超えているため、ftドゥイーノ 供給されます。

3
4位
5
6⽇

schertechnikデータベース： https://ft-datenbank.de/tickets?fulltext=132292
schertechnikデータベース： https://ft-datenbank.de/tickets?fulltext=132292
schertechnikデータベース： https://ft-datenbank.de/tickets?fulltext=540585
schertechnikデータベース： https://ft-datenbank.de/tickets?fulltext=30275

https://ft-datenbank.de/tickets?fulltext=132292
https://ft-datenbank.de/tickets?fulltext=132292
https://ft-datenbank.de/tickets?fulltext=540585
https://ft-datenbank.de/tickets?fulltext=30275

6.5。サーボモーター制御 85

6.5.1外部6ボルト電源

オンライン⼩売店でこの名前で簡単に⾒つけることができる、たとえば7806タイプの外部電圧レギュレータを介した供
給は、はるかに堅牢で、ほとんど複雑ではありません。このいわゆるシリーズレギュレータは、の9ボルト出⼒の1つに
直接接続できます。ftドゥイーノ 接続され、その出⼒で6ボルトに低減された電圧を提供します。

必要な部品：
1x
1x
2倍
1x
1x

電圧レギュレータ7806
サーボ延⻑ケーブルJRプラグ⾚
フィートプラグ
緑のフィートプラグ
⾚いフィートのソケット

7806は
制御信号の接続は、IのSDA接続と⼀致する必要があります。2Cコネクタ。SCL接続を追加で使⽤すると、2番⽬のサーボ
を接続できます。図6.15（b）に⽰すように、サーボのコネクタで⾚いケーブルを直接切断し、schertechnikコネクタを
提供すると、残りの2本のワイヤを備えたサーボのコネクタをIに直接接続できます。2C接続を接続します。サーボの接続
ケーブルを切断したくない場合は、図6.5.1に⽰すように、標準のJRサーボ延⻑ケーブルを切断することもできます。切
断された真ん中の⾚い接続は、schertechnikプラグを使⽤して7806に接続されます。7806にはschertechnikスリーブも
付属しています。

Schertechnik標準プラグを差し込んでから、 ftドゥイーノ プラグを差し込む。the

（a）コントローラーとアダプターケーブルのサーボ （b）電圧レギュレーターとアダプターケーブル

図6.16：オンのサーボモーター ftドゥイーノ

サーボの制御信号はIに対応していません。2C標準。代わりに、サーボは20ミリ秒ごとに繰り返される単純なパルス幅信
号を使⽤します。パルス⾃体の⻑さは1〜2ミリ秒で、サーボがとる⾓度を決定します。1ミリ秒は最⼩値を表し、2ミリ
秒は最⼤値を表します。サーボモーターを中間位置で動作させる場合は、それに応じて1.5ミリ秒のパルスが必要です。

サーボにはそれ以上のインテリジェンスがなく、指定された制御信号はチェックされません。サーボはまた、1ミリ秒未
満または2ミリ秒を超えるパルス⻑を対応する⾓度に変換しようとします。サーボの動きには機械的な制限があり、サー
ボが通常の動作範囲外の位置に移動しようとすると、サーボが損傷する可能性があることに注意してください。した
がって、1〜2ミリ秒の範囲を残すことはお勧めできません。

私のために実際に必要なパルス信号を取得します。2C信号⽤に提供されたピンを⽣成するには、ソフトウェアを使⽤す
る必要があります。サーボを中央位置に移動するプログラムフラグメントは、次のようになります。

1
2

空所 設定（）{
//ポートD.1（SDA接続）を出⼒に切り替えます

86 第6章実験

1ms 1.5ms 2ms20ms 20ms 20ms

図6.17：制御信号の関数としてのサーボ⾓度

3
4位
5
6⽇
7⽇
8⽇
9

10
11⽇
12⽇
13⽇
14⽇
15⽇
16
17⽇
18⽇

bitSet（（DDRD 、1）;
}

空所 ループ（）{
//ポートD.1をハイレベル（5V）に設定します bitSet
（（移植 、1）;

// 1500us（1.5ms）待つ _delay_us
（1500）;

//ポートD.1をローレベル（GND）に設定します
bitClear（（移植 、1）;

// 18500 us（18.5ms）待つ _delay_us
（20000-1500）;

}

ここでIのSDA接続2C最初に 設定（）-独⽴して使⽤できる出⼒に構成された関数。その結果、ループ（）-機能レジスタ
の適切なビットを設定することにより、出⼒をHi（5ボルト）またはグランド（GND）に切り替えることができます。 移
植 設定または削除されます。出⼒をオンにした後、システムは18.5ミリ秒をオフにした後、1500マイクロ秒（1.5ミリ
秒）待機するため、合計20ミリ秒のサイクル時間が達成されます。

ステッピングモーターと同様に、 ftドゥイーノ この単純なタイプのプログラミングでは、信号⽣成で常に忙しく、他の
タスクを実⾏することはできません。

ステッピングモーターと同様に、解決策は、ハードウェアタイマーを使⽤してバックグラウンドで信号を⽣成させるこ
とです。例 サーボ制御に簡単なクラスをもたらします
と。実際のメインプログラムは次のようになります。

ファイル。例 。FtduinoSimple 。ServoDemo

1
2
3
4位
5
6⽇
7⽇
8⽇
9

10
11⽇
12⽇
13⽇
14⽇
15⽇
16
17⽇
18⽇
19⽇

//
//
//

Servo.ino

＃ 含む 「Servo.h」

{{空所 設定（）
サーボ。始める（）;

}

空所 ループ（）{
静的 uint8_t値 = サーボ ：：： VALUE_MAX / 2;

もしも（（価値 < サーボ：：： VALUE_MAX）。 価値 ++; それ以
外 価値 = 0;
サーボ。セットする（（価値）;

遅れ （10）;
}

サーボの制御は、呼び出しに制限されています Servo.begin（）-バックグラウンドで必要なタイマーを設定する機能。
サーボの⾓度は、次のように調整できます。サーボセット（）-0（最⼩⾓度）から サーボ:: VALUE_MAX（最⼤⾓度）。
真ん中の位置は、例えばです。 Servo.set（サーボ:: VALUE_MAX / 2） 近づいた。

6.6。の⼊⼒ftドゥイーノ 87

6.6の⼊⼒ ftドゥイーノ

難易度：

マイクロコントローラーのすべてのピンの⽅向を切り替えることができるため、Arduinoを扱ったことのある⼈なら誰で
も、⼊⼒または出⼒として使⽤する接続を⽐較的⾃由に決定できることを知っています。でftドゥイーノ Schertechnik
のランプとモーターを操作できるようにするために、⼊⼒で過電圧と短絡に対する追加の保護回路が使⽤され、信号出
⼒が増幅されるため、この機能を取得できませんでした。

図6.18：⼊⼒の内部配線 I1 それまで I8 の ftドゥイーノ

8つの⼊り⼝のそれぞれ I1 それまで I8 の ftドゥイーノ ATmega32u4マイクロコントローラの独⾃のアナログ⼊⼒につな
がり、これとは独⽴して評価できます。これを⾏うために、マイクロコントローラーは対応する⼊⼒の電圧を測定でき
ます。

6.6.1電圧測定

⼊⼒信号がマイクロコントローラに到達する前に、2つの47キロオームの抵抗で構成される分圧器を通過します。これら
の抵抗器には2つの⽬的があります。まず、マイクロコントローラーに到達する前に、印加された信号の電圧を半分にし
ます。マイクロコントローラ以来ftドゥイーノ-5ボルトで内部的に動作し、0〜5ボルトの範囲の信号のみを処理できま
す。電圧を半分にすると、測定可能な⼊⼒電圧範囲が0〜10ボルトに拡張されます。これは、せん断技術で⼀般的な電圧
を最⼤9ボルトまで処理できることを意味します。次に、これらの抵抗は、マイクロコントローラー内部の保護ダイオー
ドと組み合わせて、マイクロコントローラーを許容できる0〜5ボルトの電圧範囲外の電圧からマイクロコントローラー
を保護します。したがって、⼊⼒で最⼤47ボルトの電圧がマイクロコントローラに損傷を与えることはありません。

6.6.2抵抗測定

the 1 kΩ- と 2。2 kΩ-スイッチが開いている限り、抵抗とスイッチは関係ありません。これらのスイッチのうち8つ（⼊
⼒ごとに1つ）は、ftドゥイーノ 付録Aの回路図に⽰されているように、CD4051（IC1）と指定されたモジュール内。マ
イクロコントローラは、いつでも8つのスイッチの1つを正確に閉じることができ、このようにして総抵抗を閉じること
ができます。3。2 kΩ（1 kΩ プラス 2。2 kΩ） それぞれの⼊⼒から5ボルトに向かってアクティブにします。

抵抗測定を⾏う場合は、スイッチを閉じて抵抗をアクティブにします。the3。2 kΩ- 次に、抵抗は⼊⼒とグランドの間に
接続された外部抵抗と分圧器を形成します。次に、測定された電圧から未知の外部抵抗を決定できます。

88 第6章実験

抵抗測定は、 Ftduinoライブラリはバックグラウンドで実⾏されています。抵抗測定のスケッチで現在使⽤されているす
べての⼊⼒への抵抗測定の⾃動切り替えもあります。プログラマーは詳細を気にする必要はなく、いつでもこの関数を
使⽤して抵抗値を決定できますftduino.input_get（）（9.2.2を参照）。

6.6.3出⼒としての⼊⼒

抵抗測定の場合、抵抗が5ボルトに切り替えられるという事実は、測定対象の外部接続された抵抗を介して回路が閉じら
れることを意味します。この回路を流れる電流は⽐較的⼩さいです。⼊⼒が直接グランドに接続されている場合、総抵
抗は次のようになります。3。2 kΩ そしてそれはの流れを流します 私。 = 5V /3。2 kΩ= 1、 5625mA。

リセット

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

O4

O6

I²C

+ 9V + 9V

図6.19：⼊⼒へのLEDの接続 I1 の ftドゥイーノ

この電流は、ランプやモーターを動作させるのに⼗分ではありません。ただし、発光ダイオードを弱く光らせることが
できます。発光ダイオードを⼊⼒とアースの間に直接接続し、⼊⼒を抵抗測定に切り替えると、LEDがごくわずかに点灯
します。

実際の電流は、予測された1.5mAをはるかに下回ります。これは、⼀⽅で、約0.7Vのいわゆる順⽅向電圧が発光ダイオー
ドに直接降下するため、両端に4ボルトをわずかに超える電圧しかないためです。抵抗器。

⼀⽅、彼⼥は尋ねます Ftduino8つの⼊⼒すべてをバックグラウンドでライブラリし、各⼊⼒のみをアクティブにします 1/8⽇

現在。したがって、それは平均して⾷べるだけです1/8⽇ ストリームの。

the FtduinoSimple-ライブラリは、最後にアクティブ化された⼊⼒の抵抗もオンにします。この抵抗は、別の⼊⼒が要
求されるまで永続的にアクティブになります。次のコードフラグメントは、⼊⼒にLEDを残しますI1 毎秒点滅します。

1
2
3
4位
5
6⽇
7⽇
8⽇
9

10
11⽇

＃ 含む <FtduinoSimple.h>

空所 ループ（）{
//⼊⼒I1の値を読み取り、I1の抵抗をアクティブにします ftduino。input_get（（
Ftduino ：：：I1）; 遅れ （1000）;

//⼊⼒I2の値を読み取り、I1の抵抗を⾮アクティブ化します//（そしてI2でアクティブ化
します）
ftduino。input_get（（Ftduino ：：：I2）;
遅れ （1000）;

}

6.7温度測定

難易度：

6.7。温度測定 89

Fischertechnikはアイテム番号36437で販売されています7⽇ いわゆるNTC。この⽬⽴たないコンポーネントは、⼀部のロボットキット
に含まれています。

NTCは、周囲温度に応じて値が変化する電気抵抗です。したがって、温度測定に適しています。NTCは負の温度係数の略
で、温度の上昇とともにオーム抵抗が減少することを意味します。NTCは、導電率が温度とともに増加するため、ドイ
ツ語では⾼温導体としても知られています。

公称抵抗 R。N NTCは通常25の温度にあります °°C（298.15 K）が述べた。のためのもの
schertechnikセンサーは指定値です 1。5 kΩ。 オーム抵抗は25です °°Cそう 1。5 kΩ。

リセット

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

O4

O6

I²C

+ 9V + 9V

図6.20：⼊⼒への温度センサーの接続 I1

6.7.1スケッチ 温度

次のスケッチは、 ftドゥイーノ-ArduinoIDEのメニューでのサポート
。

ファイル。
例 。Ftduino 。温度

1
2
3
4位
5
6⽇
7⽇
8⽇
9

10
11⽇
12⽇
13⽇
14⽇
15⽇
16
17⽇
18⽇
19⽇
20⽇
21
22⽇
23
24
25⽇
26⽇
27
28
29
30⽇
31
32

//
//
//
//⼊⼒I1でfischertechnikの温度抵抗をクエリします//

//（c）2018 by Till Harbaum < till@harbaum.org > //

Temperaure.ino

＃ 含む
＃ 含む

<Ftduino.h>
<math.h> //浮動⼩数点演算の場合

＃ 定義 K2C 273.15
＃ 定義 B 3900.0
＃ 定義 R_N 1500.0
＃ 定義 T_N（K2C + 25.0）

//ケルビンを摂⽒にオフセット//センサーのいわゆ
るB値
//摂⽒25度の基準温度での抵抗//ケルビン単位の基準温度

浮く r2deg（（uint16_t r）{
もしも（（r == 0） 戻る NAN; // 0オームの抵抗は意味のある温度を与えません

//抵抗をケルビンに変換します
浮く t = T_N * B。 /（B。 + T_N * ログ（（r / R_N））;

//ケルビンを摂⽒に変換します 戻る t - K2C;

//または、ケルビンを華⽒に変換します
//
}

t * 9/5を返す-459.67;

空所
//
pinMode（（LED_BUILTIN 、

設定（）{
LEDを初期化します

出⼒）;

7⽇ schertechnikデータベース： https://ft-datenbank.de/tickets?fulltext=36437

https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/Ftduino/examples/Temperature
https://ft-datenbank.de/tickets?fulltext=36437

90 第6章実験

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

digitalWrite（（LED_BUILTIN 、 低い）;

シリアル。始める （115200）; そ
の間（！ シリアル）;

ftduino。初期化（）;

//温度は
ftduino。input_set_mode（（Ftduino ：：：I1、 Ftduino ：：： 抵抗）;

}

空所
uint16_t r = ftduino。input_get（（Ftduino ：：：I1）;

ループ（）{

シリアル。印刷（（「I1：」）; シリアル。印刷
（（r2deg（（r））; シリアル。println（（「摂
⽒」）;

遅れ （1000）;
}

スケッチの説明

温度スケッチは、温度を格納するために、いくつかの場所でいわゆる浮動⼩数点数を使⽤します。これは、コンピュー
ター技術で使⽤される⾮整数値（⼩数）の内部表現に付けられた名前です。この⽬的のために、スケッチは10⾏⽬の
ファイルをバインドしますmath.h スケッチに浮動⼩数点関数へのアクセスを提供します。データ型は、浮動⼩数点数を
格納するために使⽤されます浮く 例：21⾏⽬で使⽤されています。

温度測定に使⽤するセンサーは抵抗器であるため、 設定（）-41⾏⽬の関数は⼊⼒です I1 の ftドゥイーノ 抵抗測定に設
定します。

実際の抵抗値は⼊⼒の45⾏⽬に⽰されています I1 整数変数で読み取ります r 提出した。48⾏⽬の値が出⼒されている
間、関数r2deg（） と呼ばれる。この関数は、17⾏⽬から28⾏⽬にあります。オーム単位の整数の抵抗値を受け⼊れ、
浮動⼩数点値として摂⽒温度を返します。

まず、21⾏⽬で抵抗がケルビンに変換されます。これは抵抗に加えて⾏われますR。N 25で °°Cいわゆるいわゆる B。-必
要なセンサーの値。この値は、25⽇以降のセンサーの動作を表します°°Cポイントと抵抗が温度変化にどれだけ強く反応
するか。この値は、によって販売されているセンサーの3900です。 せん断技術

NTCの場合、以下がおおよそ適⽤されます8⽇：

B。 ln（ R。T
1T = 1 T + 1 ）。 ⇔ T = TN∗B。

B。+TN∗ln（ RTN R。N
R。 ）。N

と

?? T 。。。現在の温度

?? TN 。。。公称温度（通常25 °°C）

?? B。 。。。B値

?? R。T 。。。現在の温度での抵抗

?? R。N 。。。公称温度での抵抗

変換後、温度はケルビンで利⽤可能になります。摂⽒に変換するには、24⾏⽬を定数から引くだけです。華⽒への変換
はもう少し複雑で、例として27⾏⽬に⽰されています。

温度測定の精度は抵抗測定の精度に直接依存し、セクション1.2.5で説明したように、これは電源に依存します。温度を
測定するには、ftドゥイーノ したがって、9V電源から電圧を供給することができます。USBインターフェースのみでの
供給では不⼗分です。

8⽇https://de.wikipedia.org/wiki/Hei%C3%9Fleiter

https://de.wikipedia.org/wiki/Hei%C3%9Fleiter

6.8。それらのオン、オフ、またはなしを出⼒しますか？ 91

6.8出⼒はオン、オフ、またはどれも出⼒しませんか？

難易度：
出⼒はオンまたはオフに切り替えることができます。これが⼀般的なビューです。しかし、⼀⾒したところ、別の条件
があることは明らかではないかもしれません。

リセット

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

O4

O6

I²C

+ 9V + 9V

図6.21：出⼝にある2つのランプ O1

の出⼒ ftドゥイーノ 次の3つの状態で切り替えることができます。 Ftduino :: HI、Ftduino :: LO と Ftduino ::オフ。

最も明⽩なのは状態です Ftduino ::こんにちは。 この状態では、対応する出⼒ ftドゥイーノ-9ボルトの供給電圧に内部接
続されています。2番⽬の接続がグランドに接続されるようにランプまたはモーターがこの出⼒に接続されている場合、
電流は9Vソースから出⼒を介してランプまたはモーターを介してグランドに流れます。モーターが回転し、ランプが点
灯します。⽰されている例では、⾚いランプが点灯しています。

状態で Ftduino :: LO 対応する出⼒はグランドに接続されています。ランプの両⽅の接続がアースに接続されているた
め、2つの接続間の電圧が0ボルトであるため、アースへの2番⽬の接続に再び接続されているランプは点灯しなくなりま
す。ランプの2番⽬の接続を9ボルトに接続すると、ランプが点灯します。電流はの電源から流れますftドゥイーノ 9 V接
続を介して、ランプを介して、最後に接地された出⼒を介して。⽰されている例では、⻘いランプが点灯しています。

最後に、3番⽬の状態は状態です Ftduino ::オフ。 この場合、出⼒は完全に開いています。アースまたは9ボルトに接続
されておらず、電流が流れません。その結果、出⼒からの電流が両⽅のランプの影響をまったく受けないため、両⽅の
ランプが半分の明るさで点灯します。
英語の⽤語
⽤語を説明します

ieÿt。この状態は、多くの場合、
トライステートおよびトライステート対応としての半導体上の対応する出⼒。ドイツの⾼抵抗で

は、この3番⽬の状態は⾮常に良好です。

次のスケッチは、3つの状態の間で毎秒変化します。この効果は、たとえば、出⼒を節約するために、1つの出⼒で2つの
モーターまたはランプを独⽴して制御するために使⽤できます。ただし、この接続では、両⽅のランプを同時にオフに
することはできません。

6.8.1スケッチ OnOffTristate

1
2
3
4位
5
6⽇
7⽇
8⽇
9

10
11⽇
12⽇
13⽇
14⽇
15⽇

/ *
OnOffTristate-3番⽬の状態

* /

＃ 含む <FtduinoSimple.h>

空所 設定 （）{}

//ループ関数は何度も何度も何度も実⾏されます 空所 ループ（）{

//出⼒O1を9Vに切り替えます ftduino。
output_set（（Ftduino ：：：O1 、 遅れ
（1000）;
//出⼒O1をグランドに切り替えます ftduino。
output_set（（Ftduino ：：：O1 、

Ftduino ：：：こんにちは）;

Ftduino ：：：LO）;

https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/OnOffTristate
https://www.onlinedoctranslator.com/ja/?utm_source=onlinedoctranslator&utm_medium=pdf&utm_campaign=attribution

92 第6章実験

16
17⽇
18⽇
19⽇
20⽇

遅れ （1000）;
//出⼒O1を未接続のままにします
ftduino。output_set（（Ftduino ：：：O1 、 Ftduino ：：：オフ）; 遅
れ （1000）;

}

6.8.2漏れ電流

⾼抵抗またはトライステート状態では電流が流れないという記述は完全に正しいです。多くの場合、低電流が電⼒出⼒
段とその内部保護回路を流れます。場合によっては、これは意図的に⾏われることもあります。たとえば、この低電流
の流れを利⽤して、接続された消費者の存在を判断できるようにするためです。これらのいわゆるリーク電流は、セク
ション6.1.1ですでに観察されています。

現在のモデルの2つのランプを2つの発光ダイオードに置き換えると、対応する出⼒が⾼抵抗に切り替えられたときに、
出⼒からグランドに接続されたLEDが常にわずかに点灯することがわかります。出⼒がグランドに切り替えられた場合に
のみ、LEDは点灯しません。したがって、LED上で3つの状態を直接区別できます。

6.9アクティブエンジンブレーキ

難易度：

エンジンのスイッチを切ることは、純粋に電気的な観点からは些細なことのようです。モーターが電源から切断される
とすぐに停⽌します。本質的に、それは本当です。

物理的には、電源からの分離は、モーターにそれ以上のエネルギーが供給されないことを意味します。これが最終的に
モーターの停⽌につながるのは、モーターの回転に蓄えられたエネルギーが、たとえばモーターシャフトのベアリング
などの摩擦によってゆっくりと失われているためです。このようにモーターが停⽌するまでにかかる時間は、モーター
の設計とベアリングの品質に⼤きく依存します。

さらに、せん断技術で使⽤されるものなど、多くの直流電気モーターが発電機として機能します。それらが回転する
と、内部の電磁⽯に電圧が誘導されます。

図6.22：発電機としてのTXTエンコーダーモーター

この効果は、発光ダイオードで簡単に理解できます。発光ダイオードを直接モーターに接続し、モーター軸を⼿動で回
すと、モーターを正しい⽅向に回すと発光ダイオードが点灯し、発光と⼀致する極性の電圧が発⽣します。ダイオー
ド。この実験では、⽩熱灯や2番⽬のモーターを使⽤することもできます。ただし、発光ダイオードと⽐較してエネル
ギー消費量が多いため、多少強⼒な回転が必要になる場合があります。

発電機が供給する負荷が⼤きくなり、からより多くのエネルギーが引き出されるほど、発電機を回転させるために必要
な機械的な⼒が⼤きくなります。この場合、負荷が⾼いほど電気抵抗が低くなります。負荷が⽐較的低い発光ダイオー
ドは電気抵抗が⾼く、⽩熱灯などがあり、モーターの電気抵抗が低く、発電機に⼤きな負荷やブレーキをかけます。こ
の場合に考えられる最⼤の負荷は短絡です。電気抵抗が最⼩で、最⼤の電流が流れ、発電機に最⼤の電気負荷がかかり
ます。ブレーキ効果も最⼤です。

この効果は、電気モーターにブレーキをかけるために使⽤できます。モーターの両⽅の接続が相互に接続されている場
合、ブレーキ効果を発⽣させる電流が⽣成されます。これは、セクション6.2の緊急停⽌モデルですでに使⽤されてお
り、緊急時にエンジンをすばやく停⽌します。⼀⽅、モーターの接続の1つが開いている場合、それは

6.9。アクティブエンジンブレーキ 93

M。 M。

ブレーキをかけた ブレーキなし

図6.23：電気的にブレーキがかけられた電気モーターとブレーキがかけられていない電気モーター

閉回路も電流も流れず、ブレーキ効果もありません。この効果はどれくらいの⼤きさですが？

schertechnikエンコーダモーターには、セクション6.3のPWM実験ですでに使⽤されている速度測定の可能性が含まれて
います。したがって、このモーターのブレーキ動作は、実験的に簡単に追跡できます。

リセット

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

O4

O6

I²C

+ 9V + 9V

図6.24：TXTエンコーダモーターの接続への接続 M1 と C1

例
回転が実⾏され、エンコーダが⼊⼒にあるパルスの数をさらに1秒間測定します C1 3回転を完了し、スイッチをオフにし
た後に配信します。

ファイル。例 。Ftduino 。モーターブレーキ モーターを出⼒に残します M1 5秒ごとに3回

関数 motor_counter_set_brake（）（セクション9.2.9を参照）は、モーターが⾃由に惰⾛するように、またはモーターがアクティブ
にブレーキをかけられるように、交互に呼び出されます。

図6.25：TXTエンコーダモーター使⽤時の出⼒

図6.25に⽰すように、アクティブブレーキは明確な違いをもたらします。エンコーダモーターはブレーキなしでさらに
90インパルス、つまりほぼ1.5回転し続けますが、アクティブブレーキを使⽤すると、さらに5回インパルスすると停⽌
します。それはほぼ同じです1/13⽇ ⾰命。

94 第6章実験

6.10USBキーボード

難易度：
the ftドゥイーノ 古典的なArduinoUnoからではなく、ArduinoLeonardoから派⽣しています。2つのArduinoの主な技術
的な違いは、Arduino UnoがPCとのUSB通信に別のチップを使⽤するのに対し、ArduinoLeonardoではこのタスクは
ATmega32u4マイクロコントローラーのみに任されているという事実にあります。

ほとんどの場合、違いはなく、ほとんどのスケッチは両⽅のArduinoで同じように実⾏されます。ただし、両⽅の
ArduinoがUSB接続に提供する可能性には⾮常に⼤きな違いがあります。宇野のUSBチップが作成中COM：-レオナルド
は⾃分⾃⾝が制限されていることを⽰しています。 ftドゥイーノ はるかに柔軟で ftドゥイーノ とりわけ、PCのUSBキー
ボードのふりをすることができます。

の出⼒以来 ftドゥイーノ このモデルを使⽤できない場合は、USB経由の電源で⼗分であり、バッテリーや電源を介した
追加の電源は必要ありません。

リセット

3 I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

1
2 O4

O6

I²C

+ 9V + 9V

図6.26：キーボードメッセージ

6.10.1スケッチ USB / KeyboardMessage

1
2
3
4位
5
6⽇
7⽇
8⽇
9

10
11⽇
12⽇
13⽇
14⽇
15⽇
16
17⽇
18⽇
19⽇
20⽇
21
22⽇
23
24
25⽇
26⽇
27
28
29
30⽇

/ *
KeyboardMessage-USBキーボード

ftDuinoはUSBキーボードのふりをして、⼊⼒I1のボタンが少なくとも10ミリ秒押されるとすぐに、メッセージを
「⼊⼒」します。

スケッチに基づく：
http：//www.arduino.cc/en/Tutorial/KeyboardMessage

このサンプルコードはパブリックドメインです。
* /

＃ 含む
＃ 含む

<FtduinoSimple.h>
<Keyboard.h>

unsigned long lastButtonEvent = 0; uint16_t
previousButtonState = Ftduino ：：：オフ; //プッシュボタンの状態を確認するため

空所 設定（）{
//キーボードの制御を初期化します： キーボード。始める
（）;

}

空所 ループ（）{
//⼊⼒I1でキーを読み取ります
uint16_t buttonState = ftduino。input_get（（Ftduino ：：：I1）;

//キーの状態は変更されましたか？ もしも（（buttonState ！=
previousButtonState）{

//はい、変更の時間を覚えておいてください

https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/USB/KeyboardMessage

6.11。USBゲームパッド 95

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

lastButtonEvent = ミリス （）;
//さらに変更を認識できるように、//新しいステータスをメモします

previousButtonState= buttonState;
}

//未処理のイベントがあり、キーの状態が//それから10ミリ秒以上変更されていませんか？

もしも（（lastButtonEvent &&（（ミリス （）-lastButtonEvent）> 10））{
//このイベントの時間を忘れる lastButtonEvent = 0;

//ボタンが押されました もしも
（（buttonState）。

// ニュース
キーボード。println（（"こんにちは

{{
「タップ」

ftDuinoから！」）;
}

}
}

スケッチの説明

Arduino IDEには、マウスやキーボードなどのUSBデバイスを実装するためのライブラリがすでに付属しています。実際
のスケッチは⾮常に単純なままであり、複雑なUSBの詳細はライブラリに隠されたままです。このスケッチはそれに応
じて短いです。

の中に設定（）-メソッドのみが機能する必要がありますKeyboard.begin（）の開始時に呼び出されますftドゥイーノ
USB側ですべての予防策を講じてftドゥイーノ PCによってUSBキーボードとして認識されます。ただし、このキーボー
ドには最初はキーがないため、PCが追加のキーボードを備えていると⾒なしていることに気付くことはほとんどありま
せん。

キーボードを⽣命で満たすためには、キーボードが ループ（）-機能は、必要に応じて、対応するキー信号を⽣成してPCに送信
できます。スケッチの25⾏⽬から35⾏⽬には、⼊⼒にボタンがありますI1 照会され、10msより⻑いキーストロークのみがその
ように認識されることを確認しました（このいわゆるデバウンスの詳細については、セクション6.12を参照してください）。

ボタンがオンになっているときはいつでも I1 を押すと、スケッチ線４５以降が実⾏される。これは、関数がここにあります
Keyboard.println（） Arduinoキーボードライブラリから呼び出され、PCにテキストを送信しました。PCの場合、ユーザーが
キーボードでテキストを⼊⼒しているように⾒えます9。

キーボードエントリとしてメッセージを直接送信する可能性は、PCでさらにプログラミングしなくても、測定値をテー
ブルなどに⾃動的に⼊⼒できるため、⾮常に実⽤的です。もちろん、この能⼒は、を使⽤してあらゆる種類のジョーク
に使⽤することもできますftドゥイーノ 時間管理された、または他のイベントに反応することは、予期しないテキスト⼊
⼒で驚いたユーザーを苛⽴たせます。このような夜の外出では、間違った時間に間違ったキーを押すとデータが簡単に
失われる可能性があるため、常に⼗分な注意を払う必要があります。

6.11USBゲームパッド

難易度：

PCの観点からは、USBキーボードとUSBジョイスティックまたはゲームパッドの違いはごくわずかです。どちらもいわゆる
USB-HIDプロトコルを使⽤します（HID =ヒューマンインターフェイスデバイス、つまり⼈のためのインターフェイスデバイ
ス）。ただし、Arduino側では、Arduino環境にキーボード⽤のライブラリ関数が事前に作成されているが、ゲームパッドや
ジョイスティック⽤にはないという根本的な違いがあります。とにかくUSBゲームパッドを実装するには、スケッチでさらに
多くの努⼒を払う必要があります。

9マウスとキーボードのシミュレーション⽤のArduinoライブラリの詳細と詳細な説明は、次のURLにあります。 https://www.arduino.cc/en/
Reference/MouseKeyboard

https://www.arduino.cc/en/Reference/MouseKeyboard

96 第6章実験

3
1 3

2
2 リセット 1

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

3

2

3 3

2
1 1 O4

O6
1

2

3
1

2
I²C

+ 9V + 9V

図6.27：4つの⽅向キーと2つの発射ボタンを備えたゲームパッド

6.11.1スケッチ USB /ゲームパッド

対応する例は以下にあります
3つのファイルで構成されています。その間GamePad.ino 実際のスケッチを実装する HidGamePad.cpp と
HidGamePad.h ArduinoIDEが提供していないゲームパッドサポートのその部分。特におもしろいもの
_hidReportDescriptor-ファイル内の構造 HidGamePad.cpp。

ファイル。例 。FtduinoSimple 。USB。ゲームパッド 。このスケッチは

9
10
11⽇
12⽇
13⽇
14⽇
15⽇
16
17⽇
18⽇
19⽇
20⽇
21
22⽇
23
24
25⽇
26⽇
27
28
29
30⽇
31
32
33
34
35
36
37

静的定数 uint8_t _hidReportDescriptor [] プログラム = {
0x05 、0x01 、
0x09 、
0x85 、
0xa1 、
0x09 、
0xa1 、
0x09 、
0x09 、
0x15 、
0x26 、
0x35 、
0x46 、
0x75 、
0x95 、
0x81 、
0xc0 、
0x05 、
0x19 、
0x29 、
0x15 、
0x25 、
0x95 、
0x75 、
0x81 、
0x95 、
0x81 、
0xc0

// USAGE_PAGE（汎⽤デスクトップ）//

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

0x05 、
REPORT_ID 、
0x01 、
0x01 、
0x00 、
0x30 、
0x31 、
0x00 、
0xff 、
0x00 、
0xff 、
0x08 、
0x02 、
0x02 、

使⽤法（ゲームパッド）
REPORT_ID（3）
コレクション（アプリケーション）

使⽤法（ポインタ）
コレクション

利⽤⽅法
利⽤⽅法
LOGICAL_MINIMUM（0）
LOGICAL_MAXIMUM（255）
PHYSICAL_MINIMUM（0）
PHYSICAL_MAXIMUM（255）
REPORT_SIZE（8）
REPORT_COUNT（2）
INPUT（Data、Var、Abs）
END_COLLECTION

USAGE_PAGE（ボタン）
USAGE_MINIMUM
USAGE_MAXIMUM
LOGICAL_MINIMUM（0）
LOGICAL_MAXIMUM（1）
REPORT_COUNT（2）
REPORT_SIZE（1）
INPUT（Data、Var、Abs）
REPORT_COUNT（6）
INPUT（Const、Var、Abs）
END_COLLECTION

（物理的）
（バツ）
（Y）

0x00 、

0x00 、

0x09 、
0x01 、
0x02 、
0x00 、
0x01 、
0x02 、
0x01 、
0x02 、
0x06 、
0x03 、

（ボタン
（ボタン

1）
2）

};

この⽐較的不可解な構造は、USBHIDデバイスの機能を説明しています10。それはそれがどんなタイプのデバイスであるか、そ
してジョイスティックの場合にはそれがどんな軸とボタンを持っているかを説明します。

この場合、デバイスは2つの軸XとYを持ち、それぞれが0から255の値の範囲をカバーしていることを報告します。オンと
オフのステータスのみを認識する2つのボタンもあります。この説明は、単純なジョイスティックには⼗分です。ただ
し、説明を拡張して、追加の軸とボタンを提供することは簡単に可能です。合計8つのアナログ⼊⼒と4つのデジタル⼊
⼒で、ftドゥイーノ 複雑な⼊⼒デバイスに⼗分な接続オプション。

⼀般的なHIDデバイスは、キーボード、マウス、ジョイスティックまたはゲームパッドです。しかし、いわゆるの仕様

10詳細については、 http://www.usb.org/developers/hidpage/

https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/USB/GamePad
http://www.usb.org/developers/hidpage/

6.12。デバウンス 97

10個のHID使⽤状況テーブル11⽇ さまざまなスポーツ、VR、シミュレーション、医療機器などに、はるかに多くのオリジナルの
⼊⼒デバイスを提供します。そしてもちろん、ftドゥイーノ たとえば、⼒のフィードバックの形でランプまたはモーターを介
してフィードバックを実装することも可能です。

6.12デバウンス

難易度：
以前のスケッチのいくつかでは、ボタンを照会するために予想外の量の努⼒が払われました。の中にPwmセクション
6.3.1のスケッチでは、35⾏⽬と51⾏⽬、および KeyboardMessage- セクション6.10のスケッチでは、時間も31⾏⽬と
39-41⾏⽬に記録され、キー押下の評価に挿⼊されました。なぜこれが必要なのかという問題は、もう少し詳しく検討す
る必要があります。

個々のキーストロークを評価するときにこの時間を使⽤する理由は、バウンスと呼ばれるものです。メカニカルボタン
は、分離されているか接触している2つの⾦属接点で構成されています。静⽌時には、接点が分離され、ボタンが押され
ると、メカニズムによって2つの⾦属接点が確実に接触し、接点が閉じます。

次のスケッチは、⼊⼒I1のボタンを継続的に照会し、 COM：-ステータスが変化すると、ポートはメッセージを発⾏しま
す。さらに、状態がすでに全体的に変化した頻度をカウントします。

リセット

3 I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

1
2 O4

O6

I²C

+ 9V + 9V

図6.28：デバウンス

6.12.1スケッチ デバウンス

1
2
3
4位
5
6⽇
7⽇
8⽇
9

10
11⽇
12⽇
13⽇
14⽇
15⽇
16
17⽇
18⽇
19⽇
20⽇
21

/ *
デバウンス

デモンストレーション キーバウンス
* /

＃ 含む <FtduinoSimple.h>

//セットアップ関数は起動時に1回呼び出されます 空所 設定（）{

シリアル。始める （9600）;

その間（！ シリアル）; // USB接続を待ちます

シリアル。println（（「ftDuinoキーバウンスの例」）;
}

uint8_t last_status = false; uint8_tカウンター
の変更 = 0;

//ループ関数が何度も呼び出されます

11⽇http://www.usb.org/developers/hidpage/Hut1_12v2.pdf

https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/Debounce
http://www.usb.org/developers/hidpage/Hut1_12v2.pdf

98 第6章実験

22⽇
23
24
25⽇
26⽇
27
28
29
30⽇
31
32
33

空所 ループ（）{
uint8_t状態 = ftduino。input_get（（Ftduino ：：：I1）; //読み上げボタン

もしも（（状態 ！= last_status）{
カウンターを変更する = カウンターを変更する + 1;

//状態は変わりましたか？//はい、カウンターを1
つ増やします

シリアル。印刷（（「I1」）; シリアル。印刷
（（カウンターを変更する）; シリアル。println
（（「時代が変わった」）; last_status = 状態;

//そしてメッセージを印刷します

//新しい状態を最後に記憶します
}

}

スケッチの説明

10⾏⽬から16⾏⽬は、 ComPort3.3節の例では、PCへの出⼒を準備し、シリアルモニターのメッセージを出⼒しまし
た。

23⾏⽬では、⼊⼒は継続的に⾏われています I1 照会されました。変数の状態と⽐較した状態last_status 変更された場
合、これは25⾏⽬で決定されます。その結果、変数 カウンターを変更する が増加し、28⾏⽬から30⾏⽬に新しい値が出
⼒されます。

タスク1：それはあまりにも重要です

スケッチをクリックすると何か奇妙なことが起こります ftドゥイーノ ロードして試してみました：ボタンを押すとすぐに、⼊
⼒のステータスの変化に関するいくつかのメッセージが表⽰され、カウンターは予想よりも⼤幅にカウントされます。何が起
こっていますか？

問題は、スイッチを切り替えた瞬間に、接点がすぐに完全に閉じないことです。代わりに、⾦属表⾯が短時間接触し、
数マイクロ秒の間跳ね返り、⾮常に短時間の間再び開きます。数回のばね操作の後でのみ、接点が停⽌し、完全に閉じ
られます。

解決策1：

この問題の最も簡単な解決策は、切り替えイベントの後で別の問題を受け⼊れる前に少し待つことです。これは、たと
えば、31⾏⽬以降で何かを待つことで実現できます。Pwmセクション6.3.1からのスケッチが⾏われました。

31
32
33

last_status = 状態; 遅れ （10）; //新しい状態を最後として記憶します// 10ミリ秒待
ちます

}

この変更後、スケッチは実際には1回のキーストロークのみをカウントします。ただし、この単純なソリューションには
1つの⽋点があります。ボタンが押されるたびに、スケッチ全体の実⾏が10ミリ秒⼀時停⽌されます。スケッチに実⾏す
る他のタスクがある場合、これらのタスクの処理もこれらの10ミリ秒の間中断されます。使⽤するボタンによっては、
時間をミリ秒未満に短縮することができます。ただし、待ち時間が短すぎると、間違ったイベントが再度認識されま
す。

したがって、この機能を備えたすべてのイベントでよりエレガントになります ミリス（） システムタイムカウンターからタイ
ムスタンプを取得し、最後のイベントが10ミリ秒以上前の場合にのみイベントを有効として認識します。the
KeyboardMessage-セクション6.10のスケッチは、まさにこの⽅法で問題を解決します。

演習2：今何が起こっているのですか？

ボタンがバウンスする時間とその動作は、推測することしかできませんでした。できますかftドゥイーノ ボタンの切り替
え動作を詳しく⾒てみましょう。

6.12。デバウンス 99

解決策2：解決策2：

Arduino IDEには、信号プロセスを説明するための⾮常にシンプルですが興味深いツールがあります。いわゆるシリアル
プロッタは、下のメニューにあります。 シリアルのように開きます
独⾃のウィンドウを監視します。しかし、代わりにCOM：-受信したテキストをポートで直接表⽰するために、シリアル
プロッターは⼊⼒データを1⾏ずつ、曲線でグラフィカルに表⽰（プロット）される値として解釈します。

ツール 。シリアルプロッタ

次の例を以下に⽰します ⾒つけられる。ファイル。例 。FtduinoSimple 。BounceVisu

1
2
3
4位
5
6⽇
7⽇
8⽇
9

10
11⽇
12⽇
13⽇
14⽇
15⽇
16
17⽇
18⽇
19⽇
20⽇
21
22⽇
23
24
25⽇
26⽇
27
28
29
30⽇
31
32
33
34
35
36
37
38
39
40
41

/ *
BounceVisu

視覚化 キーバウンス
* /

＃ 含む <FtduinoSimple.h>

＃ 定義
uint8_t

EVENT_TIME 480
イベント[EVENT_TIME];

// 480us

//セットアップ関数は起動時に1回呼び出されます 空所 設定（）{

シリアル。始める （9600）; そ
の間（！ シリアル）; // USB接続を待ちます

}

//ループ関数が何度も呼び出されます 空所 ループ（）{

//ボタンが押されるまで待ちます
もしも（（ftduino。input_get（（Ftduino ：：：I1））{

//マイクロ秒ごとに480マイクロ秒の⼊⼒値をフェッチします にとって（（uint16_t

イベント[私] =
_delay_us （1）;

私= 0;私<EVENT_TIME;私++）{ ftduino。
input_get（（Ftduino ：：：I1）;

}

//最初に20個のゼロを出⼒します にとって
（（uint16_t i= 0;私<20;私++）

シリアル。println （0）;

//読み取った480の値を出⼒します にとって（（
uint16_t i= 0;私<EVENT_TIME;私++）

シリアル。println（（イベント[私]）;

// ⼀瞬待って 遅れ （1000）;

}
}

スケッチは22⾏⽬でキーが⼊⼒されるのを待ちます I1 が押されました。それから彼は少しの間⼊り⼝の状態を描きます
I1 の上。9⾏⽬は、480個の値が記録されることを指定しています。⾏27は、2つの記録の間に1マイクロ秒待機するた
め、合計480マイクロ秒が記録されます。記録が完了すると、最初の20⾏のゼロが出⼒され、次に以前に記録された480
の値が出⼒されるため、合計500の値が出⼒されます。最初の20の値は、ボタンがまだ押されていないときの録⾳前の状
態を表します。

シリアルプロッタは、合計500個の値を曲線として表⽰します。値は、接点が開いていると認識されるとゼロになり、接
点が閉じられるとすぐに1になります。グラフィックでは、ボタンが約40マイクロ秒の間数回開閉し、その後、信号が
100マイクロ秒以上安定してから、接点がさらに数回開き、最後に合計200マイクロ秒後に安定して閉じることがわかり
ます。したがって、ソリューション1で使⽤される⼀時停⽌は、バウンスが影響を与えることなく、200マイクロ秒に短
縮できます。

PCへの⽂字の送信には⽐較的⻑い時間がかかるため、出⼒する前に値を完全に記録して保存する必要があります。値が
すぐにPCに送信された場合、データ送信⾃体に時間がかかるため、マイクロ秒の解像度は達成できません。実際、それ
も持続します

100 第6章実験

図6.29：シリアルプロッタでのバウンスのコース

⼊⼒を読み取る I1 しばらくの間、測定のタイミングはあまり正確ではありません。ただし、基本的なプロセスを⽰すだ
けで⼗分です。

6.13Iの使⽤2Cバス

難易度：

セクション1.2.6で説明されているように、 ftドゥイーノ 私について。2Cコネクタ。Arduinoの世界では、私は2C-Bus
は、多数の安価な拡張モジュールを簡単に接続できるため、⾮常に⼈気があります。

the ftドゥイーノ Iには保護キャップが付いています。2セクション1.2.6に⽰すように配信されるC接続。このキャップは、Iを使⽤する前に使⽤
する必要があります。2Cコネクタを取り外す必要があります。

少しの努⼒で、ほとんどのセンサーをに接続できます ftドゥイーノ 間違い。図6.30は、オンラインで安価に⼊⼿できる
⼀般的なMPU6050センサーボードのケーブル接続の例を⽰しています。したがって、センサーは直接接続されますft
ドゥイーノ 接続可能。

VCC
GND
SCL
SDA
XDA
XCL
ADO
INT

（a）配線図 （b）完成したセンサー

図6.30：接続ケーブル付きのMPU6050センサー ftドゥイーノ

独⾃のプロジェクトでそれぞれのセンサーを使⽤するには、通常、追加のコードルーチンまたはライブラリが必要です。Arduinoプラット
フォームが広く使⽤されているということは、ほとんど検索することなく、ほぼすべての⼀般的なセンサーに適した例とコードライブラリを⾒
つけることができることを意味します。12⽇。

12⽇センサーライブラリの⼤規模なコレクションは、以下にあります。 https://github.com/ControlEverythingCommunity。

https://github.com/ControlEverythingCommunity

6.13。Iの使⽤2Cバス 101

図6.31：さまざまなI2に適切な接続ケーブルを備えたCセンサー ftドゥイーノ

6.13.1スケッチ I2C / I2cScanner

センサーへの電気的接続が正しいかどうかをすばやくテストするには、通常、Iの簡単なテストで⼗分です。2C通信オ
フ。下 シンプルなものです
私。2私から始まったCテストプログラム2C-Busは接続されたセンサーを検索し、それらのアドレスを出⼒します。センサーのそれぞれのアド
レスは、通常、センサーの製造元によって永続的に割り当てられます。MPU-6050の場合、これはアドレスです0x68。 このアドレスは、セン
サーが正しく接続されている場合に表⽰されます。

ファイル。例 。FtduinoSimple 。I2C 。I2cScanner

図6.32：の出⼒ I2cScanner MPU-6050を接続した状態

6.13.2MPU-6050センサー

MPU6050の場合、 ftドゥイーノ-あなた⾃⾝の例のある環境。以下のスケッチ例
MPU-6050から加速度値を読み取り、それらをに出⼒します

ファイル。例 。
FtduinoSimple 。I2C 。MPU6050テスト

シリアルモニターがオフです。

図6.33：の出⼒ MPU6050テスト

https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/I2C/I2cScanner

102 第6章実験

6.13.3OLEDディスプレイ

Iのもう1つの明らかなアプリケーション。2C接続は、⼩さなディスプレイの接続であり、たとえば、 ftドゥイーノ 測定
値を出⼒できます。

わずかなお⾦でオンライン⼩売りに0.96インチの画⾯対⾓線を持つOLEDディスプレイがあります。サイズは3弱∗3cm2

これらのディスプレイは、せん断技術と互換性のある対応するハウジングへの設置にも⾮常に適しています
13⽇。

VCC GND SCL SDA SDA SCL GND VCC
住所 選択する

0x7A 0 0x7B

128x64 OLED

（a）フロント （b）戻る

（c）住宅内

図6.34：接続ケーブル付きのOLEDディスプレイ ftドゥイーノ

ケーブルをはんだ付けするときは、他の点では同⼀のディスプレイ間でピン割り当てに違いがあるため、ここでのス
ケッチではなく、ディスプレイボード上のインプリントを使⽤することが重要です。

このディスプレイは、SSD1306をディスプレイコントローラーコンポーネントとして使⽤します14⽇ SolomonSystechによる。このタイプのディスプレイは
Arduino環境で⾮常に⼈気があり、適切なライブラリがインターネットで⼊⼿できます。1516。

重要： 他の多くの私と同じように。2OLEDディスプレイもCセンサーではありません ftドゥイーノ-固有ですが、他のArduinoプロジェクトでも
使⽤されます。したがって、そのサポートはの⼀部ではありませんftドゥイーノ-インストール。ただし、上記のAdafruitライブラリは個別にイ
ンストールする必要があります。それ以外の場合、スケッチの翻訳はアートのメッセージとともに送信されます致命的なエラー：
Adafruit_GFX.h：そのようなファイルまたはディレクトリはありません または同様のキャンセル。

Adafruit_SSD1306ライブラリは、表⽰テストに対応しています
例。

ファイル。例 。Adafruit SSD1306 。
ssd1306_128x64_i2c

注：このマニュアルの以前のバージョンでは、ライブラリへの⼿動変更がここで説明されていました。これは、128x64
ディスプレイに必要でした。Adafruit SSD1306ライブラリの現在のバージョンでは、この調整は不要になりました。例
もそれに応じて適合されています。

スケッチ⾃体では、私は2のCアドレス 0x3D 後 0x3C 調整する：

13⽇https://www.thingiverse.com/thing:2542260
14⽇SSD1306のデータシート： https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
15⽇Adafruit SSD1306ライブラリ： https://github.com/adafruit/Adafruit_SSD1306
16Adafruit GFXライブラリ： https://github.com/adafruit/Adafruit-GFX-Library

https://www.thingiverse.com/thing:2542260
https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
https://github.com/adafruit/Adafruit_SSD1306
https://github.com/adafruit/Adafruit-GFX-Library

6.13。Iの使⽤2Cバス 103

60
61

//デフォルトでは、3.3vラインから内部で⾼電圧を⽣成します！（きちんとした！） 画⾯。始める（（
SSD1306_SWITCHCAPVCC 、0x3C）; // I2Cアドレス0x3Dで初期化します（

128 x64）
//初期化が完了しました62

the ftドゥイーノ-インストール⾃体も、この表⽰を使⽤する例をもたらします。Shootduinoゲームは以下にあります
。ゲームは⼊り⼝に3つのボタンを期待していますI1、

I2 と I3 宇宙船とおそらくランプを制御するために O1。
ファイル。例 。FtduinoSimple 。Shootduino

6.13.4 VL53L0XLIDAR距離センサー

Fischertechnikは、距離測定⽤の超⾳波センサーを提供しています。これは、セクション1.2.6に⽰すように、 ftドゥ
イーノ 操作することができます。この超⾳波センサーは超⾳波パルスを送信し、⾳波が障害物に到達してセンサーに反
射するまでの通過時間を測定します。距離は、通過時間と既知の⾳速から決定できます。

Arduinoの世界では、VL53L0Xレーザー距離センサーの形で興味深い代替⼿段があります。機能原理は超⾳波センサーと
同じですが、⾳の代わりにレーザー光を使⽤しています。VL53L0XはI経由で簡単にアクセスできます。2Cと ftドゥイー
ノ 仲間、同僚。

VIN

GND

SCL

SDA

GPIO01

XSHUT

図6.35：VL53L0Xの ftドゥイーノ

セルフプリントに適したハウジングは、 ftドゥイーノリポジトリ17⽇。

図6.36：3Dプリントされたハウジング内のVL53L0X

ほぼすべての通常の私は。2Cセンサーは、VL53L0X⽤の既製のArduinoライブラリとスケッチを使⽤してインターネット上で⾒つけることもで
きます18⽇。

17⽇VL53L0Xハウジング： https://github.com/harbaum/ftduino/tree/master/addons/vl53l0x
18⽇VL53L0X⽤のAdafruitライブラリ： https://github.com/adafruit/Adafruit_VL53L0X

GYVL53L0XV2

https://github.com/harbaum/ftduino/tree/master/addons/vl53l0x
https://github.com/adafruit/Adafruit_VL53L0X

104 第6章実験

6.13.5 ftドゥイーノ 私のように。2Cクライアントと2つのカップリング ftドゥイーノs

the ftドゥイーノ Iを介して他のデバイスを使⽤できるだけではありません。2Cバスをアドレス指定します。別のデバイスでアドレス指定するた
めに、バス上にパッシブデバイスとして出⼒することもできます。

このオプションを使⽤する最も簡単な⽅法は、2つの場合です。 ftドゥイーノsIの真上。2結合するC。

両⽅のデバイスに9ボルトの電源

リセット リセット

3 I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

1
2 O4

O6

O4

O6

I²C I²C

+ 9V + 9V + 9V + 9V

I²Cマスター I²Cスレーブ

図6.37：2つの結合 ftドゥイーノs私について2C。

2つのIの間には1：1の接続があります。2関連するコントローラーのC接続。この構造では、1つのコントローラーをマス
ターとして、もう1つをスレーブとして構成する必要があります。対応するスケッチ例は以下にありますファイル

と
。

。例 。FtduinoSimple 。I2C 。I2cMaster ファイル。例 。FtduinoSimple 。I2C 。
I2cSlave

マスターは継続的に⼊⼒を求めます I1 ボタンを接続し、Iを介してボタンのステータスを送信します。2スレーブとして
構成された2番⽬のC ftドゥイーノ。次に、ランプを出⼒に切り替えますO1 それに応じてオンまたはオフにします。

マスターの電源供給は、Iを介して⾏うことができます2C接続。出⼒でランプを制御できるようにするには、スレーブに
のみ9ボルトを直接供給する必要があります。私を介した供給2Cは、セクション1.2.5で説明されている既知の制限付きの
USB経由の電源に対応します。

⾼度 I2cSlave

簡単な例に加えて
th FtduinoSimple-ライブラリのビルドは下にあります ファイル 。 例 。 Ftduino
の⼊⼒および出⼒機能のほとんどをカバーする本格的なライブラリ構築の例 ftドゥイーノ 私について。2Cが公開しま
す。

ファイル。例 。FtduinoSimple 。 I2C 。 I2cSlave、 機能を減らすことについて
1つ。I2C 。I2cSlave

この拡張スケッチは、複雑なモデルの基礎として適しています。ここに⽰す例では、3つを使⽤していますftドゥイーノsマス
ターを拡張するftドゥイーノ さらに24の出⼒と36の⼊⼒によって。

最初 ftドゥイーノ 左端の写真では、マスターが形成され、その後に3つのスレーブが続きます。変更されていない例は、最初のスレー
ブで実⾏されます 。他の奴隷のために、私は2のCアドレス
スケッチはカスタマイズできます。これは、16⾏⽬をI2cSlave-他の2つのスレーブのアドレス43が44または45に置き換えられ
ていることをスケッチします。

ファイル。例 。Ftduino 。I2C 。I2cSlave

13⽇
14⽇
15⽇
16
17⽇
18⽇
19⽇
20⽇
21

空所 設定（）{
pinMode（（LED_BUILTIN 、 出⼒）; // LEDを初期化します

ワイヤー。始める （43）;
ワイヤー。onReceive（（receiveEvent）; //書き込みイベントに登録します ワイヤー。要求に応じて
（（requestEvent）; //読み取りイベントに登録します

//アドレス＃43で「スレーブ」としてI2Cバスに参加します

ftduino。初期化（）;

6.13。Iの使⽤2Cバス 105

すべてのデバイスに9ボルト電源 I²Cマスター I²Cスレーブ＃43 I²Cスレーブ＃44 I²Cスレーブ＃45

リセット リセット リセット リセット

3 I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

1
2 O4

O6

O4

O6

O4

O6

O4

O6

I²C I²C I²C I²C

+ 9V + 9V + 9V + 9V + 9V + 9V + 9V + 9V

図6.38：4つのカップリング ftドゥイーノs私について2C。

22⽇
23
24

//すべての出⼒は⾼インピーダンスです
memset（（output_mode 、0、 のサイズ（（output_mode））;

}

この場合、マスターには実際のプログラムロジック全体が含まれ、スレーブはIを介して基本的な制御コマンドを受け取りま
す。2C反対。マスタースケッチは以下にあります 。12⾏⽬
3つのスレーブのアドレス43、44、および45はすでにそこに設定されています。より多くのまたはより少ないスレーブを使⽤する場合は、それ
に応じて12⾏⽬を調整する必要があります。

ファイル。例 。Ftduino 。I2C 。I2cMaster

9
10
11⽇
12⽇

// 0（マスター⾃体）で始まり、//終了マーカーとして-1で始まる、制御されるI2cクライアントのリスト。この場合、3つ
のクライアントがアドレス// 43、44、および45で接続されています

静的定数 int8_tクライアント [] = {0、43、44、45、-1};

4つすべての電源 ftドゥイーノ■マスターに接続されているschertechnik電源ユニットから作成できます。次に、スレー
ブは2極Schertechnikケーブルを介してマスターの9ボルト出⼒から供給されます。

図6.39：4 ftドゥイーノs私について2C結合

例
ただし、スレーブを変更および拡張する⽅がより実⽤的である可能性があります。ほぼ独⽴したサブユニット（組⽴ラ
インなど）を備えたモデルのデバイスは、個々のステーションを1つから簡単に分離できます。ftドゥイーノ 主に⾃律的
な制御と私を持つために2C通信を最⼩限に抑えるため。たとえば、ステーションに新しいコンポーネントが到着したこ
とをアナウンスするため。

ファイル。例 。Ftduino 。I2C 。I2cMaster 複雑なモデルのテンプレートとして適しています。応じて

次の表にIを⽰します2Cは⽇付として登録します I2cSlave.ino のために ftドゥイーノ 実装されました。前に付けられた値
0バツ 16進表記で表⽰されます。

106 第6章実験

出⼒O1からO8またはM1からM4のレジスタ割り当て

登録 説明
0バツ00 出⼒モードO1 / M1

0バツ0バツ - 単⼀出⼒としての操作
0バツ00- シングル出⼒オープン/⾼抵抗（トライステート） 0バ
ツ01- + 9V（⾼）に切り替えられた単⼀出⼒ 0バツ02- 単⼀出⼒
がグランドに切り替えられました（低） 0バツ1バツ - モーター
出⼒M1へのO2と結合された出⼒ 0バツ10- ブレーキなしのモー
ター出⼒（o） 0バツ11- モーター出⼒がブレーキオフ（ブレー
キ） 0バツ12- モーター出⼒が左に曲がる 0バツ13- モーター出
⼒が右に曲がる

0バツ01 出⼒値（PWM）O1 / M1 0（オフ）から255（100％オン）このレ
ジスタが書き込まれると、ハードウェア出⼒のステータスが更
新されます。

0バツ02 出⼒モードO2
出⼒モードO1 / M1（レジスタ 0バツ00） 値 0バツ1バツ 含む

0バツ00- シングル出⼒オープン/⾼抵抗（トライステート） 0
バツ01- + 9V（⾼）に切り替えられた単⼀出⼒ 0バツ02- 単⼀
出⼒がグランドに切り替えられました（低）

0バツ03 0（オフ）から255（100％オン）までの出⼒値（PWM）O2
出⼒モードO1 / M1（レジスタ 0バツ00） 値 0バツ1バツ 含む

このレジスタが書き込まれると、ハードウェア出⼒のス
テータスが更新されます。

0バツ04 出⼒モードO3 / M2、出⼒モードO1（レジスタ 0バツ00）
0バツ05 出⼒値O3 / M2、出⼒値O1（レジスタ 0バツ01）
0バツ06 出⼒モードO4、出⼒モードO2（レジスタ 0バツ02）
0バツ07 出⼒値O4、出⼒値O2（レジスタ 0バツ03）
0バツ08 出⼒モードO5 / M3、出⼒モードO1（レジスタ 0バツ00）
0バツ09 出⼒値O5 / M3、出⼒値O1（レジスタ 0バツ01）
0バツ0a 出⼒モードO6、出⼒モードO2（レジスタ 0バツ02）
0バツ0b 出⼒値O6、出⼒値O2（レジスタ 0バツ03）
0バツ0c 出⼒モードO7 / M4、出⼒モードO1（レジスタ 0バツ00）
0バツ0d 出⼒値O7 / M4、出⼒値O1（レジスタ 0バツ01）
0バツ0e 出⼒モードO8、出⼒モードO2（レジスタ 0バツ02）
0バツ0f 出⼒値O8、出⼒値O2（レジスタ 0バツ03）

⼊⼒I1からI8の割り当てを登録します

⼀般的なI2C転送では、⼊⼒の最⼤2バイトを読み取ることができます。各⼊⼒は個別に読み取る必要があります。

6.13。Iの使⽤2Cバス 107

登録 説明
0バツ10 書き込み：⼊⼒モードI1 0バ

ツ00- 電圧 0バツ01- 抵抗 0バ
ツ02- カウンター

読み取り：⼊⼒値I1、下位バイト（LSB）
0バツ11⽇ 読み取り：⼊⼒値I1、上位バイト（MSB）
0バツ12⽇ ⼊⼒モード/⼊⼒値I2、⼊⼒モードI1（レジスタ 0バツ10）
0バツ13⽇ ⼊⼒値I2、⼊⼒値I1（レジスタ 0バツ11）
0バツ14⽇ ⼊⼒モード/⼊⼒値I3、⼊⼒モードI1（レジスタ 0バツ10）
0バツ15⽇ ⼊⼒値I3、⼊⼒値I1（レジスタ 0バツ11）
0バツ16 ⼊⼒モード/⼊⼒値I4、⼊⼒モードI1（レジスタ 0バツ10）
0バツ17⽇ ⼊⼒値I4、⼊⼒値I1（レジスタ 0バツ11）
0バツ18⽇ ⼊⼒モード/⼊⼒値I5、⼊⼒モードI1（レジスタ 0バツ10）
0バツ19⽇ ⼊⼒値I5、⼊⼒値I1（レジスタ 0バツ11）
0バツ1a ⼊⼒モード/⼊⼒値I6、⼊⼒モードI1（レジスタ 0バツ10）
0バツ1b ⼊⼒値I6、⼊⼒値I1（レジスタ 0バツ11）
0バツ1c ⼊⼒モード/⼊⼒値I7、⼊⼒モードI1（レジスタ 0バツ10）
0バツ1d ⼊⼒値I7、⼊⼒値I1（レジスタ 0バツ11）
0バツ1e ⼊⼒モード/⼊⼒値I8、⼊⼒モードI1（レジスタ 0バツ10）
0バツ1f ⼊⼒値I8、⼊⼒値I1（レジスタ 0バツ11）

カウンタ⼊⼒C1〜C4のレジスタ割り当て

登録 説明
0バツ20⽇ 書き込み：カウンターモードC1 0バ

ツ00- アウト
0バツ01- ⽴ち上がりエッジ
0バツ02- ⽴ち下がりエッジ
0バツ03- 両⽅の側⾯
0バツ04- 超⾳波センサー読み取りをアクティ
ブにします：⼊⼒ステータスC1

0バツ21 書き込み：カウンターC1
0バツ00- カウンターを変更しないでください。それ以外の場

合は、カウンターをクリアしてください

読み取り：カウンター読み取りC1 /超⾳波距離、下位バイト（LSB）
0バツ22⽇ カウンター読み取りC1 /超⾳波距離、上位バイト（MSB）
0バツ24 書き込み：カウンターモードC2 0バ

ツ00- アウト
0バツ01- ⽴ち上がりエッジ 0
バツ02- ⽴ち下がりエッジ 0バ
ツ03- 両端を読み取る：⼊⼒ス
テータスC2

0バツ25⽇ 書き込み：カウンターC2
0バツ00- カウンターを変更しないでください。それ以外の場

合は、カウンターをクリアしてください

読み取り：カウンター読み取りC2、下位バイト（LSB）

0バツ26⽇ カウンタ読み取りC2、上位バイト（MSB）
0バツ28 カウンターモードC3、カウンターモードC2（レジスタ 0バツ24）
0バツ29 カウンタ読み取りC3、下位バイト（LSB）、カウンタ読み取りC2（レジスタ 0バツ25）
0バツ2a カウンタ読み取りC3、上位バイト（MSB）、カウンタ読み取りC2（レジスタ 0バツ26）
0バツ2c カウンターモードC4、カウンターモードC2（レジスタ 0バツ24）
0バツ2d カウンタ読み取りC4、下位バイト（LSB）、カウンタ読み取りC2（レジスタ 0バツ25）
0バツ2e カウンタ読み取りC4、上位バイト（MSB）、カウンタ読み取りC2（レジスタ 0バツ26）

108 第6章実験

ftドゥイーノ 私のように。2PC上のCスレーブ

もちろんできます ftドゥイーノ 私のように。2他⼈だけでなくC奴隷 ftドゥイーノsだけでなく、適切なIが装備されている
場合はPCやその他のデバイスでも。2Cインターフェースを搭載。PCの場合、必要なI2USB経由のシンプルなアダプター
を使⽤してCインターフェースを改造します。そのようなアダプターの1つはi2c_tiny_usb19⽇。

GND 5V VIN

（a）配線図 （b）完成したアダプター

図6.40：Digispark /i2c_tiny_usb Iへの接続⽤。2C des ftドゥイーノ

LinuxPCの場合20⽇ プログラムはできますか i2c_detect 利⽤される。パラメータ付き-l あなたは最初にすべての私のリス
トを得ることができます2Cバスを出⼒します。

$ i2cdetect -l
i2c-3
i2c-1
i2c-8
i2c-6
i2c-4
i2c-2
i2c-0
i2c-9
i2c-7
i2c-5

わからない
わからない
i2c
わからない
わからない
わからない
わからない
i2c
わからない
わからない

i915 gmbus dpc
i915 gmbus vga
em2860＃0
DPDDC-B
i915 gmbus dpb
i915gmbusパネル
i915 gmbus ssc
バス001デバイス023DPDDC-Cのi2c-tiny-
usb
i915 gmbus dpd

N / A
N / A
I2Cアダプター
N / A
N / A
N / A
N / A
I2Cアダプター
N / A
N / A

Digispark /i2c_tiny_usb この場合、次のように表⽰されます i2c-9。 私は2のCバス i2c_tiny_usb デバイスを検索しま
す。

$ i2cdetect -y 9
0 1 2 3 4 5 6 7 8 9 abcdef

---- ----00：
10：---------------- ---- ---- ---- 40：---- ---- ---- ---- ---- ---- ---- ----
---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----- ---- ---- ----
---- ---- ---- ---- 70：---- ---- ---- ---- ----

この場合、 FtduinoSimple-ライブラリベースのシンプル I2cSlave の ftドゥイーノ 認識された。

リポジトリ内21 アクセスに使⽤できるPythonの例があります ftドゥイーノ アクセスすることができます。より広範なに
ついてはFtduinoライブラリベースのバリアント。リポジトリにはPythonの例もあります22⽇。

ftドゥイーノ 私のように。2TXTのCスレーブ

セクション6.13で述べたように、私は3.3ボルトで動作しました2schertechnik TXTコントローラーのC接続は、5ボルトで動作す
るIと電気的に互換性がありません2のCポート ftドゥイーノ。

19⽇に関する詳細情報 i2c_tiny_usb
20⽇また、ラズベリーパイまたは
21 https://harbaum.github.io/ftduino/ftduino/libraries/FtduinoSimple/examples/I2C/I2cSlave/master.py
22⽇ https://harbaum.github.io/ftduino/ftduino/libraries/Ftduino/examples/I2C/I2cSlave/master.py

下にあります https://github.com/harbaum/I2C-Tiny-USB
schertechnikTXTはLinuxPCです

P0
P1

P2
P3

P4
P5

https://github.com/harbaum/I2C-Tiny-USB
https://harbaum.github.io/ftduino/ftduino/libraries/FtduinoSimple/examples/I2C/I2cSlave/master.py
https://harbaum.github.io/ftduino/ftduino/libraries/Ftduino/examples/I2C/I2cSlave/master.py

6.13。Iの使⽤2Cバス 109

シンプルなレベルシフター

ただし、適切なレベルコンバータを使⽤すると、必要な信号調整を簡単に⾏うことができます。このための電⼦機器
は、オンラインショップで安価に⼊⼿できます。TXT⾃体は3.3ボルトを供給しないため、電⼦機器が5ボルト側の電源か
ら3.3ボルト側の電圧供給を⽣成することを確認する必要があります。

AVCC
ASCL

BVCC
BSCL

txtftDuino

BSDA

BGND
ASDA
AGND

（a）ケーブル図 （b）TXTへの接続

図6.41：TXTとを接続するためのレベルシフター ftドゥイーノ

6.13.6 ftドゥイーノ-私2Cエキスパンダー

いわゆるIはレベルシフターの機能も果たします2Cエキスパンダー23。このデバイスはで使⽤されましたftドゥイーノ 設計され
ていますが、TXTまたはTXで操作することもできます。

（a）完成したデバイス （b）個々の部品

図6.42：I2のためのCエキスパンダー ftドゥイーノ

私。2C-Expanderは、TXT互換の10ピンIを提供します。2Cコネクタ対応と4つの6ピンTXそれぞれ ftドゥイーノ-互換性。
4つのftドゥイーノ-互換性のあるポートは1対1で接続され、複数のIを接続するために使⽤できます。2Cデバイスから ft
ドゥイーノ 利⽤される。TXTまたはそのセンサーへの接続を可能にするレベルシフターも含まれています。レベルシフ
ターには、ftドゥイーノ。

schertechnik TXTコントローラーのコミュニティファームウェアに適したアプリは、cfwアプリリポジトリにあります。24。

私以来2TXT上のCデバイスは、RoboProおよび元のrmwareである ftドゥイーノ このように、TXTの拡張としてRoboPro
でも使⽤できます。

6.13.7schertechnik⽅向センサー

を接続するためのケーブル ftドゥイーノ TXTとIに2Cエキスパンダーは固定⽅向に固定されていません。したがって、
TXT⽤に設計されたセンサーをftドゥイーノ 接続する。

23the ftドゥイーノ-私2Cエキスパンダー： https://github.com/harbaum/ftduino/tree/master/addons/i2c-expander
24 https://github.com/harbaum/cfw-apps/tree/master/packages/ftDuinoI2C

https://github.com/harbaum/ftduino/tree/master/addons/i2c-expander
https://github.com/harbaum/cfw-apps/tree/master/packages/ftDuinoI2C

110 第6章実験

リセット

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

O4

O6

I²C

+ 9V + 9V

図6.43：Iを介したschertechnikセンサーの接続2Cエキスパンダー

これは、たとえば、組み合わせセンサー158402でテストされました。25⽇ 3-in-1⽅向センサー 26⽇ 既製のArduinoスケッ
チもあるBoschBMX055に基づいています27。9ボルトの供給電圧は、ftドゥイーノ。

（a）レベルシフター （b）1⽇2Cエキスパンダー

図6.44：からの⽅向センサー せん断技術 ftドゥイーノ

6.13.8schertechnik環境センサー

ROBOTICSTXTスマートホームキット544624の環境センサー28 BME680に基づく29 ボッシュセンサーテックから。温度、
気圧、湿度、空気の質のセンサーが含まれています。

図6.45に⽰すように、Arduino環境にはこのセンサー⽤のさまざまなライブラリもあり、ArduinoIDEのライブラリマ
ネージャーを使⽤して簡単にインストールできます。Adafruitライブラリは最初の実験を歓迎します。

私は2BME680のCアドレスは、適切な配線を使⽤して調整できます。Fischertechnikがアドレスを設定します0x76 しば
らくの間、Adafruitライブラリにはデフォルトでアドレスの下にセンサーがあります 0x77 期待される。下の例では

したがって、schertechnikが使⽤するアドレスは、いずれの場合も明⽰的である必要があります

指定できます。関数を呼び出すbme.begin（） 例では次のように変更する必要があります。
ファイル。例 。AdafruitBME680ライブラリ

もしも （！bme。始める （0x76））{
シリアル。println（（「有効なBME680センサーが⾒つかりませんでした。配線を確認してください！」）; その
間 （1）;

25⽇ schertechnikデータベース： https://ft-datenbank.de/tickets?fulltext=158402
26⽇https://content.ug scher.com/cb les / scher / Zulassungen / ft / 158402-Kombisensor-Kurzanleitung-BMX055-2017-06-09.pdf
27https://github.com/ControlEverythingCommunity/BMX055
28 schertechnikデータベース： https://ft-datenbank.de/tickets?fulltext=544624
29ボッシュBME680： https://www.bosch-sensortec.com/bst/products/all_products/bme680

https://ft-datenbank.de/tickets?fulltext=158402
https://content.ugfischer.com/cbfiles/fischer/Zulassungen/ft/158402-Kombisensor-Kurzanleitung-BMX055-2017-06-09.pdf
https://github.com/ControlEverythingCommunity/BMX055
https://ft-datenbank.de/tickets?fulltext=544624
https://www.bosch-sensortec.com/bst/products/all_products/bme680

6.13。Iの使⽤2Cバス 111

図6.45：BME680のArduinoライブラリ

}

センサーはレベルシフターとIで調整できます。2Cエキスパンダーとftエクステンダーを操作します（セクション8.5を参
照）。

（a）レベルシフターを介した接続 （b）の発⾏ ファイル。例 。AdafruitBME680ライブラリ 。
bme680test

図6.46： schertechnik環境センサー ftドゥイーノ

BME680は、加熱と抵抗の測定を通じて空気の質を評価します。Adafruitライブラリは、ここではあまり意味のない抵抗
値のみを提供します。ボッシュ⾃体は、値をACQ品質値に変換するためのクローズドソースライブラリを提供していま
す。これは、schertechnik⾃体が構築キットで使⽤しています。このライブラリはArduinoでも利⽤できますが、ライブ
ラリが⼤きすぎてフラッシュメモリに対応できませんftドゥイーノ。

抽象空気質値の代替計算 airq このように⾒えます。

gas_baseline
hum_baseline
hum_weighting
gas_offset
hum_offset
hum_score

=
=
=
= gas_baseline - gas_resistance; =湿度 -
hum_baseline;
=（100- hum_baseline - hum_offset）/

（100- hum_baseline）*（hum_weighting * 100）;
=（gas_resistance / gas_baseline）*（100-（hum_weighting * 100））; =hum_score + gas_score
;

200000.0;
40.0;
0.25;

gas_score
airq

112 第6章実験

6.13.9 Mini-I2Cサーボアダプター

特に ftドゥイーノ Mini-Iになりました2設計されたCサーボアダプタ。サイズは⼩さいですが、電源とサーボ制御を1つの
ハウジングにまとめています。

図6.47：Mini-I2Cアダプターオン ftドゥイーノ

接続と試運転

最初の起動では、Iのみ2間のC接続 ftドゥイーノ とミニI2Cアダプターが作られています。⼀般的に、を使⽤することをお
勧めしますftドゥイーノ 電圧とUSB電源から切断し、2C接続が確⽴され、切断されます。接続が確⽴されるとすぐに、ft
ドゥイーノ スイッチを⼊れます。Mini-Iの発光ダイオード2Cアダプターは、約1秒間点灯してから、消灯します。

に ftドゥイーノ 最初のテストに使⽤する必要があります
インストールされます。最初のテストでは、9ボルトもサーボ接続も必要ありません。I2cScannerスケッチがアドレスの下にあるはずです0バ
ツ11⽇ アダプターを⾒つけます。

ファイル。例 。FtduinoSimple 。I2C 。I2cScanner -スケッチイン-

I2Cスキャナー
スキャン..。
アドレス0x11でI2Cデバイスが⾒つかりまし
た

！

アダプターが ftドゥイーノ に対処すると、アダプタの発光ダイオードが短時間点灯するはずです。このテストが機能しない場
合は、2Cケーブルを確認します（両⽅のコネクタが正しい向きになっていますか？）。他のデバイスはIで動作していますか。2

のCポート ftドゥイーノ？

このテストが成功した場合、図6.48に⽰すように、サーボと9ボルト電源を接続できます。ここでも、ftドゥイーノ 再配
線中は電源とUSB電源から切断してください。

Mini-I2Iの間にCサーボアダプタを挿⼊します。2のC出⼒ ftドゥイーノ サーボの接続が接続されています。サーボに電⼒
を供給するためにも9ボルトの接続が必要です。Mini-I2Cアダプターは

Schertechnik-通常9ボルトからサーボ互換の5ボルト。

注意！ 私は2のCポート ftドゥイーノ、Mini-Iの2Cサーボアダプタとサーボは過電圧から保護されておらず、9Vと接触して
はなりません。を使⽤することをお勧めしますftドゥイーノケーブルの電源を切る。

すべての接続が確⽴されたら、下のスケッチ
利⽤される。両⽅のサーボ出⼒を反対⽅向に連続的に制御します。

ファイル。例 。FtduinoSimple 。I2C 。
MiniServoAdapter

6.13。Iの使⽤2Cバス 113

リセット リセット

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

O4

O6

O4

O6
2
1

サーボ
9V2

1
サーボ

9VI²C I²C
I²C I²C

+ 9V + 9V + 9V + 9V

（a）個⼈I。2Cコネクタ （b）ダブルI。2Cコネクタ

図6.48：Mini-Iの接続2へのCアダプター ftドゥイーノ

プログラミング

Mini-Iのプログラミング2C-Servo-Adapterは⾮常にシンプルです。簡単な例を以下に⽰します。
。出⼒を値に設定するには、通常、

ファイル。
例 。FtduinoSimple 。I2C 。MiniServoAdapter

次のコードをリッチにします。

ワイヤー。beginTransmission（（住所）; ワイヤー。
書きます （0x00）; ワイヤー。書きます （94）; ワイ
ヤー。endTransmission （）;

// 0 =サーボ1、1 =サーボ2
//中央、63（左端）から125（右端）

レジスタ割り当て

Mini-Iの標準アドレス2Cサーボアダプターは16進です 0バツ11⽇ または10進数 17⽇ このアドレスは永続的に変更できま
す（以下を参照）。住所を忘れた場合は、彼がお⼿伝いします

-スケッチしてアダプタのアドレスを決定します。
ファイル。例 。FtduinoSimple 。

I2C 。I2cScanner

登録
0バツ00/0バツ01

説明
サーボ出⼒1または2のパルス幅を16刻みで設定しますµ標準設定を参照してください。63
（1ms）から125（2ms）までのサーボに適した範囲の値のみが受け⼊れられます。この範囲
外の値には上限があります。制限は変更できます（以下を参照）。サーボ1またはサーボ2の
パルスモードの下限を16で設定するµsステップ。デフォルト値は63です。レジスタに⼊⼒さ
れたこの制限より⼤きい値0バツ00 と 0バツ01 この下限に制限されています。

サーボ1またはサーボ2のパルスモードの上限を16で設定するµsステップ。デフォルト値は125
です。レジスタに⼊⼒されたこの制限よりも⼩さい値0バツ00 と 0バツ01 この上限に制限さ
れています。
このレジスタを書き込むと、サーボ1または2のoセットが設定されます。デフォルト値は 0。
oセットはレジスタによるものになります 0バツ00 また 0バツ01 パルスごとに追加 後 境界が
チェックされました。このようにして、例えば、中⼼位置をサーボの個々の特性に適合させ
ることができる。
私を⼊れて2Cアドレス。新しいアドレスは、次の範囲内にある必要があります0バツ03 それまで 0バツ77 を除
いて嘘をつく 0バツ3c （（このアドレスは、内部OLEDディスプレイからより適切です ftドゥイーノs使⽤）。

の執筆 0xa5 レジスターで 0バツ09 転送はビアレジスタを保存します 0バツ02 それまで 0バツ
08 EEPROMで永続的に⾏われる設定。この時点から、再起動後も電源が⼊っていなくても設
定は保持されます。
レジスタの読み取り 0バツ00 ファームウェアバージョンをBCDコーディングで返します。たとえば、
バージョン1.0の場合は0x10
他のすべてのレジスタは、読み取り時に供給します 0バツ5a

0バツ02/0バツ03

0バツ04/0バツ05

0バツ06/0バツ07

0バツ08

0バツ09

0バツ00 読む

0バツ01+ 読む

114 第6章実験

私の変化2Cデバイスアドレス

前のセクションで説明したように、I2Mini-IのCアドレス2Cサーボアダプタを交換してください。下
完成したスケッチもあります。

ファイル。
例 。FtduinoSimple 。I2C 。MiniServoAddress

このスケッチがに適⽤される場合 ftドゥイーノ ロードすると、アドレスをインタラクティブに変更できます。通常、こ
れは必要ありません。複数のMini-Iの場合のみ。2C-Servo-Adapterを同時に操作する場合は、各アダプタに個別のアドレ
スを指定する必要があります。これを⾏うには、調整するアダプターを最初に接続します。ftドゥイーノ 図6.49に⽰すよ
うに、接続してアドレスを変更しました。

図6.49：Iの変更2Mini-IのCアドレス2Cアダプター

6.14WS2812Bフルカラー発光ダイオード

難易度：
でのWS2812B発光ダイオードの使⽤ ftドゥイーノ いくつかのはんだ付けと補助ライブラリのインストールが必要です。した
がって、このプロジェクトは上級ユーザーにのみお勧めします。

私。2のCポート ftドゥイーノ 主にIを接続するために使⽤されます2Cデバイス。そこに接続されている信号のためSDA と SCL た
だし、ATmega32u4マイクロコントローラーの⾃由に使⽤できる接続では、他のタイプの信号にも使⽤できます。そのような
信号の1つは、WS2812B発光ダイオードで使⽤されるシリアル同期データストリームです。これらの発光ダイオードは、メー
ターによってさまざまなオンラインプロバイダーからわずかなお⾦で⼊⼿できます。

の内部電源を使⽤するには ftドゥイーノ 過負荷を回避するには、最⼤2つのWS2812B発光ダイオードをIの5ボルト電源に接続す
る必要があります。2のCポート ftドゥイーノ 動作します。より多くの発光ダイオードを使⽤する場合は、別の外部5ボルト電源
を⽤意する必要があります。

GND

⽕曜⽇

+ 5V

GND

⾏う

+ 5V

GND

⽕曜⽇

+ 5V

GND

⾏う

+ 5V

図6.50：2つのWS2812BフルカラーLEDの接続

各WS2812B発光ダイオードストリップには、次の3つの⼊⼒信号があります。 グラウンド、+ 5V と ⽕曜⽇。 供給信号 ⼨法 と
+ 5V Iの対応するものに直接関連しています2Cポートが接続されています。シグナル⽕曜⽇ のデータを表し、

リ
セ

ッ
ト

I1 I2 I3 I4 I5 I6 I7 I8

O
1

O
2

O
3

O
5 O
7

O
8 C1 C2 C3 C4O

4

O
6

I²C

+
9V

+
9V

6.15。からの⾳楽ftドゥイーノ 115

発光ダイオードのデータ信号⼊⼒。データ出⼒は、発光ダイオードストリップのもう⼀⽅の端にもあります （⾏う） 使
⽤しないでください。彼はそれを渡します⽕曜⽇ 受信信号は、追加の発光ダイオードに渡される場合があります。The
DI-信号はオプションで使⽤できます SCL また SDAIのピン。2Cポート。対応する信号名は、後でスケッチに⼊⼒する必
要があります。

LEDは注意して接続する必要があります。短絡または誤った接続は、LEDおよびftドゥイーノ 損傷する。

6.14.1スケッチ WS2812FX

WS2812B LEDと必要なコードライブラリを制御するための例は、たとえばWS2812BFXライブラリにあります。30⽇ 削除
することができます。WS2812B発光ダイオードを制御するための他のライブラリも使⽤できるはずです。

ライブラリのインストールには、ArduinoIDEの経験が必要です。ライブラリが正しくインストールされている場合は、
さまざまな例を以下に⽰します 。例 適しています

発光ダイオードの機能をチェックします。
ファイル。例 。WS2812FX auto_mode_cycle

スケッチの最初に、使⽤する発光ダイオードの数と接続を調整するために、2つの⼩さな変更を加えるだけで済みます。

1
2
3
4位
5
6⽇

＃ 含む <WS2812FX.h>

＃ 定義
＃ 定義

LED_COUNT
LED_PIN

2
SCL

＃ 定義 TIMER_MS 5000

6.15からの⾳楽 ftドゥイーノ

難易度：

the ftドゥイーノ スピーカーが内蔵されていないため、補助なしでは⾳を出⼒できません。ただし、スピーカーを出⼒の
1つに接続することは可能です。ftドゥイーノ 接続する。Schertechnikスピーカーカセット36936はもちろんこれに特に
適しています。

リセット

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

O4

O6

I²C

+ 9V + 9V

図6.51：スピーカーカセットの ftドゥイーノ

少なくともの直列抵抗が重要です 100 Ω スピーカーと ftドゥイーノ 切り替えられます。の9ボルトはftドゥイーノ スピー
カーに直接置くと、スピーカーが⾮常に簡単に損傷し、⽣成される⾳が⾮常に⼤きくなる可能性があります。直列抵抗
は最⼤電流を制限し、スピーカーと聴覚を保護します。

ここで、50％のPWM⽐で出⼒O2をオンにすると、PWM信号を直接聞くことができます。

30⽇https://github.com/kitesurfer1404/WS2812FX

https://github.com/kitesurfer1404/WS2812FX

116 第6章実験

ftduino。output_set（（Ftduino ：：：O2 、 Ftduino ：：：こんにちは、 Ftduino ：：：MAX / 2）;

50％PWM信号により、出⼒は永続的に こんにちは と オフ 切り替えられました（セクション6.3も参照）。出⼝のときだ
けこんにちは これは、スピーカーを介した出⼒からアース接続への電流です。のPWM周波数以来Ftduinoライブラリは
約200ヘルツで、この周波数でトーンを聞くことができます。

セクション6.3で説明したように、PWM⽣成は、この⽬的のために提供されたATmega32u4マイクロコントローラーの
PWM出⼒を介して⽣成されるのではなく、マイクロコントローラーがSPIバスを介して出⼒ドライバーに継続的に送信す
る信号を介して⽣成されます。この⼿順は⾮常に柔軟性があり、8つの出⼒すべてを独⽴した信号で制御できますが、マ
イクロコントローラーからの絶え間ない協⼒が必要であり、計算時間の⼀定の割合を永続的に消費します。PWM周波数
が⾼いほど、マイクロコントローラーが信号を変更しなければならない頻度が⾼くなり、実際のスケッチでは利⽤でき
ない計算時間の必要性が⾼くなります。200ヘルツでは、この影響はごくわずかです。ただし、⾳を発⽣させるには、キ
ロヘルツの範囲の周波数が必要です。デジタルのオン/オフ⽅形波信号だけでなく、たとえばアナログ正弦波信号を⽣成
する場合は、メガヘルツ範囲のPWM信号も必要です。ATmega32u4は、SPIバスを介してこれを⾏うことはできません。

MC33879出⼒ドライバにはそれぞれ2つの⼊⼒があります31SPIバスをバイパスして直接制御できます。の中にftドゥイー
ノ これらの⼊⼒のほとんどは接地されていますが、出⼒⽤のものです O2 責任あるインプット EN6 出⼒ドライバの U3
ピン付きです PB7 ATmega32u4の。これにより、出⼒ドライバの出⼒トランジスタの1つをATmega32u4のこのピンを
介して直接切り替えることができます。Arduinoの世界では、このピンの番号は11で、通常のArduino機能と切り替える
ことができます。

//出⼒O2のハイサイドドライバーを1秒間アクティブにします pinMode （11、 出⼒）;
digitalWrite （11、

遅れ （1000）;
digitalWrite （11、

⾼い）;

低い）;

出⼝で効果を確認するには、 FtduinoSimple-まだ必要な出⼒ドライバーの初期化はライブラリによって⾏われるため、
ライブラリをスケッチに含める必要があります。

6.15.1スケッチ ⾳楽

難易度：
または、このピンでサウンド⽣成⽤のArduinoコマンドを使⽤することもできます。下のスケッチ例

これを使って。ファイル。例 。FtduinoSimple 。⾳楽
//コンサートピッチAを1秒間再⽣します 調⼦（11、440、
1000）;

6.15.2スケッチ MusicPwm

難易度：
使⽤したピン PB7 はATmega32u4内部タイマー1の⼀部です。これは、ATmega32u4の特別なハードウェアを使⽤して
信号を⽣成できることを意味します。これは、計算能⼒を使⽤せずに⾼周波信号を⽣成できることを意味します。

スケッチ例
前のスケッチを作成します。コードはかなり不可解で、より複雑に⾒えます。Arduinoが調⼦ （） - 機能しますが、いわ
ゆるタイマー割り込みのバックグラウンドでトーンを⽣成するための計算能⼒が必要です。この例のトーンは、
ATmega32u4プロセッサのいわゆるタイマーハードウェアからのみ⽣成されます。プロセッサの実際のコンピューティ
ング部分は、ピッチの変更またはサウンド出⼒の停⽌のみを担当します。

ファイル。例 。FtduinoSimple MusicPwmはそれを使⽤して、

このような単純な⾳楽の例では、バックグラウンドの計算能⼒要件はごくわずかです。ただし、超⾳波範囲以上などの
⾮常に⾼い周波数を⽣成する場合は、周波数が⾼くなるほど信号を頻繁に変更する必要があるため、バックグラウンド
での計算能⼒の必要性が⾼まります。タイマーハードウェアを使⽤しても、この問題は発⽣しません。⾳の⽣成に必要
な信号の変化、つまり、

31EN5 と EN6、 ご参照ください http://cache.freescale.com/ les / analog / doc / data_sheet / MC33879.pdf

https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/Music
https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/MusicPwm
http://cache.freescale.com/files/analog/doc/data_sheet/MC33879.pdf

6.16。theftドゥイーノ MIDI楽器として 117

希望のトーン周波数での出⼒は⾃動的に⾏われるため、⾼周波数であってもマイクロコントローラーからの計算時間を
必要としません。

6.16 ftドゥイーノ MIDI楽器として

スピーカーを接続することは、⾳を出す唯⼀の⽅法です。Schertechnikなどのモジュラーシステムは、たとえばダイナミック
モジュラーシリーズのサウンドチューブの助けを借りて、電気機械的な⽅法で⾳を発するように⾃然に誘います。

その柔軟なUSBインターフェースで、 ftドゥイーノ そのようなスキルを活⽤するエレガントな⽅法。いわゆるMIDIイン
ターフェース32 コンピュータと電⼦楽器を接続するように設計されています。電気的な⾮常に特殊なMIDI接続に加え
て、USB経由のMIDIのバリエーションがあります。Arduino環境はMIDIUSBIDEのライブラリ管理を介して直接インス
トールできるライブラリ。

図6.52：ArduinoIDEへのMIDIUSBライブラリのインストール

6.16.1スケッチ MIDI楽器

the ftドゥイーノ-以下のサンプルスケッチ
the ftドゥイーノ PC⽤のMIDIデバイスとして使⽤できるようにします。⼀般的なオペレーティングシステムには、対応するデバイス⽤のドライバーが既にあり、
Windows、Linux、およびMacOSは、MIDIデバイスに構成されたデバイスを認識します。ftドゥイーノ USBオーディオデバイスとして追加のドライバをインストー
ルする必要はありません。

ファイル。例 。FtduinoSimple 。MIDI楽器 このライブラリを使⽤して

the ftドゥイーノ いわゆるUSB複合デバイスです。これは、同時に複数のUSB機能を実装できることを意味します。MIDI
の場合、これはPCにMIDIデバイスとして表⽰され、同時に USB経由で続⾏COM：-インターフェイス。これは、特にス
ケッチの開発中に⾮常に役⽴ちます。

それと1つ MIDI楽器提供されるスケッチ ftドゥイーノ たとえば、⼀般的なMIDIツールを備えたLinuxPCによって認識されます。

$ aplaymidi -l
ポート
14-0
24：0

クライアント名
ミディスルー
ftDuino

ポート名
ミディスルーポート-0
ftDuino MIDI 1

$ aplaymidi -p 24：
0demosong.mid。。。

the ftドゥイーノ ⽚⽅の歌の声になります O2 接続されたスピーカーとで再⽣ COM：-受信したコマンドに関する出⼒
ポート情報は、電気機械機器の基礎として機能します。

この単純な例はモノフォニックであり、⼀度に1つのノートしか再⽣できないため、この単純なセットアップで⼗分に再
⽣できるMIDIファイルはほとんどありません。ポリフォニックソングは再⽣できません。もちろん、この制限はポリ
フォニックメカニカルミュージックモデルで解除でき、ここで使⽤されている⾮常に単純なタイプのサウンド⽣成にの
み起因します。

サンプルモノフォニックファイル song.mid スケッチのディレクトリにあります。

32MIDI、楽器デジタルインターフェース、 https://en.wikipedia.org/wiki/MIDI

https://github.com/harbaum/ftduino/tree/master/ftduino/libraries/FtduinoSimple/examples/MidiInstrument
https://en.wikipedia.org/wiki/MIDI

118 第6章実験

6.17 ftドゥイーノ Androidスマートフォンで

難易度：
最新のAndroidスマートフォンおよびタブレットのほとんどは、 ftドゥイーノ 適切なケーブルを使⽤して直接接続しま
す。これには、いわゆるUSB-On-the-Go（USB-OTG）ケーブルが必要です。のためにftドゥイーノ Lindy31717が適して
います。両端に適切なプラグがあり、50cmでモデルに収まるほど短いです。

（a）スクリーンショット （b）スマートフォンをオンにする ftドゥイーノ

図6.53：を使⽤するためのAndroidデモ ftドゥイーノ スマートフォンで

USB-OTGを使⽤すると、スマートフォンがPCの役割を果たします。対応するケーブルが接続されると、電圧がUSBポー
トで利⽤可能になり、アクティブないわゆるUSBホストとしてUSBバスの制御を引き継ぎます。の出⼒がftドゥイーノ 必
須ではありません。このようにして、独⾃の電源で実⾏することもできます。 ftドゥイーノ 免除されます。theftドゥ
イーノ その後、携帯電話から電⼒が供給されます。

スマートフォンとの間のすべての通信 ftドゥイーノ シリアルUSB接続（COMポート）を介して実⾏され、 ftドゥイーノ
-PCとの通常の通信と同じように扱われます。場合によっては、それが理にかなっているかもしれませんftドゥイーノ ス
マートフォンへのUSB接続が存在するかどうかがわかります。たとえば、スマートフォンが接続されている状態で⼿動
操作が必要なときに、スマートフォンなしで⾃動機能を実⾏する場合などです。これは、USB電源に問い合わせること
でスケッチで可能になります。

// USB電源のクエリを準備します（例：setup（）関数で） USBCON | =（1 <<OTGPADE）;

// USB電源を照会します もしも（（USBSTA ＆（1
<<VBUS））{

// USBが接続されていま
す//..。
それ以外 {{
// USBが接続されていません//..。

}

}

完全な簡単なデモスケッチは以下にあります
USB経由で1秒に1回メッセージを送信し（COUNTER：XX）、メッセージのオンまたはオフを予期して出⼒を切り替え
ます O1 によると。

ファイル。例 。FtduinoSimple 。USB。Androidデモ 。

の中に ftドゥイーノ対応するAndroidアプリはリポジトリにあります33。AndroidStudioで翻訳して、
33ftドゥイーノ-Androidアプリ： https://github.com/harbaum/ftduino/tree/master/android

https://github.com/harbaum/ftduino/tree/master/android

6.18。WebUSB：ftドゥイーノ Webブラウザによる制御 119

あなた⾃⾝の開発のための基礎を使⽤してください。AndroidアプリはUsbSerialライブラリに基づいています34 と以外の最⼩
限の調整後 ftドゥイーノ また、ほとんどのArduinoを接続します。

それ以上の構成を必要としないため、他の⽅法で使⽤されるBluetoothまたはWLAN接続よりもはるかに簡単に使⽤でき
ます。スマートフォンとftドゥイーノ connectedは対応するアプリを起動し、接続が完了します。

6.18 WebUSB： ftドゥイーノ Webブラウザによる制御

難易度：
のようなUSBデバイスでの通常の⽅法 ftドゥイーノ アクセスは固定スキームに従います。PCにデバイスとの通信⽅法を
指⽰する適切なドライバーがPCにインストールされます。Arduino IDEのようなPCアプリケーションは、このドライ
バーを使⽤してデバイスにアクセスします。

WebUSB35 は、ドライバーとソフトウェアのインストールを完全に省くことにより、USBデバイスの使⽤を⼤幅に簡素化
する試みです。代わりに、特別なWebサイトには、適切に適合されたUSBデバイスと直接通信するために必要なすべて
のものがあります。USBデバイスは、制御WebサイトがどのURLで⾒つかるかをPCに通知できます。これにより、ユー
ザーにとって実際のプラグアンドプレイソリューションが実現します。これまで知られていなかったWebUSBデバイス
を接続すると、ブラウザは適切なWebサイトを開き、ドライバやソフトウェアをインストールしなくてもデバイスをす
ぐに使⽤できます。

6.18.1Chromeブラウザ

WebUSBは公式のWeb標準ではないため、GoogleのChromeブラウザでのみ使⽤されます36 サポートします。この実験では、Chrome
をPCにインストールする必要はありません。いわゆるポータブルバージョンで⼗分です。37 たとえば、USBスティックから開始しま
す。セキュリティ上の理由から、Googleは、現在のバージョンでデバイスによって報告されたURLを⾃動的に開始するオプションを禁
⽌しています。URLhttps://harbaum.github.io/ftduino/webusb/console したがって、ブラウザに⼿動で⼊⼒する必要があります。

Chromeブラウザは、Googleがanrdoidスマートフォンおよびタブレットで提供しているブラウザです。このバージョンは、
WebUSB実験にも適しています。接続するにはftドゥイーノ スマートフォンには、USBホストケーブル（例：Lindy 31717、セ
クション6.17を参照）が必要です。

図6.54：ChromeブラウザはほとんどのAndroidデバイスにプリインストールされています

Chromiumブラウザは、LinuxPCでも同じ⽬的を果たします。通常、パッケージマネージャーを使⽤して後でインストー
ルできます。Windowsバージョンとは対照的に、図6.55に⽰すように、USBデバイスによって提供されるURLへの⾃動
転送もここで機能します。

Linux PCでは、通常、WebブラウザにはUSBデバイスを直接アドレス指定するための⼗分な権限がありません。のインストー
ルudev-セクション2.1.4で説明されているルールは、アクセスを有効にします。

6.18.2WebUSBスケッチ

いくつかのWebUSBのサンプルスケッチは、の例として⽰されています。 ftドゥイーノ-ArduinoIDEのインストール
含まれています。

ファイル。
例 。WebUSB

34Android⽤UsbSerial： https://github.com/felHR85/UsbSerial
35WebUSB： https://developers.google.com/web/updates/2016/03/access-usb-devices-on-the-web
36Google Chromeブラウザ： https://www.google.com/intl/de_ALL/chrome/
37Chromeポータブル： https://portableapps.com/apps/internet/google_chrome_portable

https://harbaum.github.io/ftduino/webusb/console
https://github.com/felHR85/UsbSerial
https://developers.google.com/web/updates/2016/03/access-usb-devices-on-the-web
https://www.google.com/intl/de_ALL/chrome/
https://portableapps.com/apps/internet/google_chrome_portable

120 第6章実験

図6.55：メッセージ ftドゥイーノ Chromiumブラウザを実⾏している

WebUSBプロジェクトのURLはスケッチで直接指定され、それに応じて独⾃のスケッチに適合させることができます。

WebUSB WebUSBSerial （1 / * https：// * /、 "harbaum.github.io/ftduino/webusb/console"）;

適切なスケッチに加えて、WebUSB仕様では、デバイスのUSB構成をさらに調整する必要があります。Arduino IDEは、
ボード選択でボードタイプを選択することにより、必要な変更を⾏いますftDuino（WebUSB） 図6.56に⽰すように。適
応はWebUSBライブラリに関連してのみ完了し、Windowsはそれ以外の場合はデバイスを認識しないため、この設定は
WebUSBにのみ使⽤する必要があります。

図6.56：WebUSB構成の選択

6.18.3コンソール

the
内蔵の発光ダイオードはオンとオフを切り替えることができます。

ファイル。例 。WebUSB 。コンソール --Sketchは、USB経由のシンプルなコマンドインターフェイスを提供します。

上のスケッチは ftドゥイーノ それをインストールしました ftドゥイーノ PCに接続し、ChromeまたはChromiumブラウ
ザを開いて、ワンクリックで⼗分です 接続、 ブラウザからデバイスへの接続を確⽴します。発光ダイオードは、コン
ソールに直接⼊⼒するコマンドを介して制御するか、ボタンをクリックして切り替えることができます。

（a）Linux上のChromiumブラウザ （b）AndroidのChromeブラウザ

図6.57：のWebUSBコンソール ftドゥイーノ

6.18。WebUSB：ftドゥイーノ Webブラウザによる制御 121

6.18.4ブリックライト

セクション8.3で説明されているBricklyプロジェクト38 TXTコントローラーのコミュニティファームウェアから開始しま
す。BricklyはBlocklyに基づいています39、Webブラウザを介して使⽤するためのグラフィックプログラミング環境。
TXTの場合、プログラマーはWebブラウザーを使⽤してスマートフォン、PC、またはタブレットで作成し、TXTで実⾏で
きます。

（a）PCのChromeブラウザで （b）Lindy31717ケーブルを搭載したAndroidタブレット

図6.58：ブリックライト ftドゥイーノ

Brickly-liteは ftドゥイーノ 完全に再設計されました。でブロック的に⽣成されたコード実⾏ftドゥイーノ 放棄されまし
た。代わりに、Brickly-liteプログラムはブラウザーで作成され、ブラウザーでも実⾏されます。ブラウザは、接続され
たUSBポートにのみアクセスして、Schertechnikセンサーとアクチュエーターを操作します ftドゥイーノ 戻る。にft
ドゥイーノ スケッチをしなければならない ⾛る。これから
内部OLEDディスプレイ（セクション1.2.7を参照）を処理できるSketchは、AdafruitGFXライブラリです。 40 スケッチを
翻訳する必要がありました。

ファイル。例 。WebUSB 。IoServer

Brickly-liteのWebサイトは次の場所にあります。 https://harbaum.github.io/ftduino/webusb/brickly-lite/。を使⽤するにはftドゥ
イーノ インストール済み -PC、スマートフォン、またはタブレットで直接スケッチする
接続されます。その後、Chromeブラウザはに接続しますftドゥイーノ モデルで⼊⼒または出⼒が⾏われるとすぐに、ブ
ラウザは対応するコマンドを ftドゥイーノ。

ファイル。例 。WebUSB 。IoServer

残念ながら、実際のプラグアンドプレイエクスペリエンスの要件は、Chromeブラウザーの定義と、Windowsでデバイ
スによって送信されるURLの⾃動開始の⽋如によって満たすことができません。USBスティックに適切なブラウザをポー
タブルにインストールする準備ができていれば、インストールなしで初⼼者が使⽤でき、たとえば学校のPCプールで使
⽤できるシナリオを簡単に作成できます。以下の例

ブラウザ操作の単純なモデルの開始点として機能できます。
ファイル。例 。

WebUSB 。コンソール

同様のグラフィックプログラミングシステムは、Arduino⽤のScratchとScatch3.0です。詳細については、セクション8.6および6.18.5
を参照してください。

6.18.5スクラッチ3.0

Bricklyと同様に、Scratch3.0はGoogleのBlocklyプロジェクトに基づいています。したがって、どちらもブラウザからWebUSBに接続するための⾮常に
よく似た⽅法を使⽤しますftドゥイーノ アクセスするために。

38TXTのブリック： https://cfw.ftcommunity.de/ftcommunity-TXT/de/programming/brickly/
39ブロック的に： https://developers.google.com/blockly/
40Adafruit GFXライブラリ： https://github.com/adafruit/Adafruit-GFX-Library

https://harbaum.github.io/ftduino/webusb/brickly-lite/
https://cfw.ftcommunity.de/ftcommunity-TXT/de/programming/brickly/
https://developers.google.com/blockly/
https://github.com/adafruit/Adafruit-GFX-Library
https://www.onlinedoctranslator.com/ja/?utm_source=onlinedoctranslator&utm_medium=pdf&utm_campaign=attribution

122 第6章実験

図6.59：ChromeブラウザでのScratch 3.0 ftドゥイーノ-拡⼤

ブリックリーは完全ですが ftドゥイーノ-特定の開発、Scratch3.0は独⽴したプロジェクトです。アンダーhttps://
harbaum.github.io/ftduino/webusb/scratch3/ Scratch 3.0の有限バージョンには、 ftドゥイーノ。

the ftドゥイーノ-拡張機能は ftドゥイーノ したがって、たとえば、レゴの拡張機能とは対照的に、PC上に追加のソフトウェア
は必要ありません。これは、拡張機能が主にWebUSBをサポートするすべてのプラットフォームで使⽤できることを意味しま
す。通常のWindows、Apple、Linux PCに加えて、これにはほとんどのスマートフォンとAndroidタブレットも含まれます。

Scratch3.0との使⽤に関する詳細情報 ftドゥイーノ セクション5.1.3にあります。

6.19 Bluetooth

難易度：

Bluetoothは、短距離⽤のワイヤレス伝送テクノロジーです。ほとんどのPC、タブレット、スマートフォンはBluetoothを使⽤
できるため、エンドデバイスにワイヤレスで接続できます。多くのおもちゃもBluetoothをサポートしており、ほとんどの
LegoまたはSchertechnikコントローラーもこのテクノロジーに精通しています。

6.19.1Bluetoothバリアント

Bluetoothには、データレート、範囲、エネルギー要件などが異なる多くのバリエーションがあります。違いのほとんど
は、上のアプリケーションのためのものですftドゥイーノ 無関係。ただし、いわゆるクラシックBluetoothとBluetooth
Low Energyには、次の⽤途での使⽤を⽬的とした基本的な違いがあります。ftドゥイーノ 重要です。

クラシックBluetooth

元のバリアントは通常、クラシックBluetoothと呼ばれます。これは主にPCとモバイルデバイス間のデータの⾃発的な
交換のために設計されており、たとえばBluetoothを使⽤する場合に使⽤されます

https://harbaum.github.io/ftduino/webusb/scratch3/

6.19。ブルートゥース 123

図6.60：Arduino⽤のBluetoothモジュールHC-05、HC-06、HM-10

ファイル、写真、連絡先などを交換することができます。Bluetoothキーボードとマウス、およびBluetoothヘッドフォンとスピー
カーも、従来のBluetoothを使⽤しています。従来のBluetoothは、このためのいわゆるプロファイルを実装しています。これらのプ
ロファイルの1つは、たとえば、ファイルの交換に使⽤されるObject Exchangeプロファイル（OBEX）です。

従来のBluetoothのもう1つのプロファイルは、いわゆるシリアルポートプロファイル（SPP）です。このプロファイルは、ポイント
ツーポイントのデータ接続を作成します。SPPは、主に有線シリアルRS232接続を置き換えることを⽬的としており、たとえば、個別
のGPS受信機や同様のデバイスでよく使⽤されていました。現在、SPPは⼩さな役割を果たしていますが、従来のBluetoothを使⽤す
るほとんどのオペレーティングシステムで引き続きサポートされています。これらには、Windows、MacOS、Linuxなどの現在のPC
オペレーティングシステム、および⼀部のモバイルオペレーティングシステムが含まれます。

PCオペレーティングシステムは常にシリアルRS232接続を処理できるため、これらの接続を使⽤できるソフトウェアは
それに応じて⼤量にあります。このサポートは、シリアル接続にマッピングできるSPP、USB、およびその他の最新テク
ノロジーに引き継がれます。ユーザーにとって、SPP Bluetooth接続は他のシリアル接続と同じように⾒え、たとえば
WindowsではいわゆるCOMポートで表されます。COMポートを使⽤できるWindowsソフトウェアは、SPPBluetooth接
続も使⽤できます。これには、Arduinoに接続するためのCOMポートを備えたArduinoIDE⾃体が含まれます。ftドゥイー
ノ を使⽤するため、SPPBluetooth接続も使⽤できます。

シリアル接続の使⽤は、モバイルオペレーティングシステムではあまり⼀般的ではありません。SPPはAndroidで使⽤で
きますが、IOSではサポートされなくなりました。

TXTコントローラーやRaspberryPiなどのデバイスも、従来のBluetoothとSPPをサポートしています。

Bluetooth Low Energy（BLE）

従来のBluetoothとは対照的に、Bluetooth Low Energy（BLE）は⾮常に若いテクノロジーです。これはBluetoothファ
ミリに⾮常に遅れて追加され、まったく新しい伝送⽅法とプロトコルに基づいています。BLEデバイスとの通信には、⽐
較的最新のハードウェアと完全に異なるソフトウェアが必要です。BLEは主に低エネルギー消費を対象としていました。
これは、低いデータレートと転送される少量のデータによって実現されます。さらに、BLEは、接続の確⽴と切断という
複雑で時間のかかるプロセスを不要にします。代わりに、⼩さなデータパケットがBLEで送信されます。

BLEがPCセクターで使⽤されることはめったになく、最新のWindowsオペレーティングシステムバージョンでのサポートには問題が
あることがよくあります。41。しかし、特にモバイルデバイスをスマートウォッチやパルスセンサーなどのデバイスと接続する場合、
BLEはその地位を確⽴しています。AndroidおよびIOSのモバイルオペレーティングシステムでのBLEのサポートは成熟しており、信頼
性があります。

TXTコントローラーやRaspberryPiなどのデバイスは、BLEだけでなく従来のBluetoothもサポートしています。

41 schertechnikエラーメッセージWin-10： https：// www。schertechnik.de/-/media/ schertechnik / te / service /ダウンロード/ robotics / robo-prolight /ド
キュメント/hinweis-win-10-Fehler-rpl436-de.ashx

https://www.fischertechnik.de/-/media/fischertechnik/fite/service/downloads/robotics/robo-pro-light/documents/hinweis-win-10-fehler-rpl436-de.ashx
https://www.fischertechnik.de/-/media/fischertechnik/fite/service/downloads/robotics/robo-pro-light/documents/hinweis-win-10-fehler-rpl436-de.ashx

124 第6章実験

クラシックBluetoothまたはBLE？

以前の説明はすでに⽰唆しています。従来のBluetoothは主にPCで使⽤されていますが、BLEはモバイル環境で選択され
るテクノロジーです。

それは、それが⼀般的に逆に機能しないという意味ではありません。BLEは特定の条件下でWindowsで使⽤でき、
Androidは従来のBluetoothに対して広範なSPPサポートを提供します。ただし、疑わしい場合は、PC環境の従来の
Bluetoothがより簡単なソリューションであり、BLEをモバイルデバイスと組み合わせて使⽤ できます。

Arduino BluetoothモジュールHC-05、HC-06およびHM-10

シンプルなArduinoは、Bluetoothサポートがほとんど機能していません。 ftドゥイーノ。したがって、Bluetoothを使⽤する
には追加のハードウェアが必要です。図6.60に⽰すように、HC-05、HC-06、およびHM-10シリーズの⼩型モジュールは、⾮常
に安価で広く普及しています。

HC-05およびHC-06モジュールは従来のBluetoothをサポートしますが、HM-10モジュールはBluetooth LowEnergyを使
⽤します。HC-05とHC-06の違いは⼩さいです。HC-05はもう少し強⼒で、たとえば、他のデバイス（それ⾃体の種類を
含む）への接続を確⽴できますが、HC-06は他のデバイスによるアドレス指定に制限されています。通常、PCまたはモ
バイルデバイスを使⽤して接続するため、これはほとんどの⽬的に完全に⼗分です。ftドゥイーノ 製造したい。

HC-05およびHC-06は、WindowsPCへの接続に特に適しています。⼀⽅、HM-10モジュールは、IOSベースのモバイルデ
バイスで使⽤できる3つのモジュールのうちの1つだけです。

ウィンドウズ

わかった
わかった

問題がある

Linux
わかった
わかった
わかった

マックOS

わかった
わかった
わかった

アンドロイド

わかった
わかった
わかった

IOS
使えない
使えない

わかった

HC-05
HC-06
HM-10

6.19.2への接続 ftドゥイーノ

電気的および機械的に、3つのモジュールはわずかに異なるだけなので、 ftドゥイーノ は3つすべてで同じであり、モ
ジュールはいつでも交換できます。

Arduinoへの接続/ftドゥイーノ 4つの信号を介して3つのモジュールすべてで発⽣します。

図6.61：HC-06の接続

VCC
GND
TXD
RXD

グランド5ボルトの供給電圧

モジュールのシリアルUARTデータ出⼒モ
ジュールへのシリアルUARTデータ⼊⼒

Arduinoとマイクロコントローラーの両⽅に適切なUARTインターフェースがあります ftドゥイーノ。従来の
ArduinoUNOでは、このインターフェースはすでにPCとのUSB通信に使⽤されています。でftドゥイーノ カウンタ⼊⼒
のこれらの信号になります C1 と C2 使⽤済み。どちらの場合も、UARTインターフェイスをBluetoothモジュールの接続
に直接使⽤することはできません。

さらに、モジュールには5ボルトが供給されますが、UART信号は3.3ボルトしか使⽤しないことに注意してください。これによ
り、モジュールからArduino /へのTXD接続が可能になります。ftドゥイーノ これらはモジュールのより低い電圧レベルを処理
できるため、違いはありません。Arduinoからの接続/ftドゥイーノ モジュールのRXD⼊⼒への接続は、ArduinoのTX出⼒からの
5ボルト全体ではないように設計する必要があります。ftドゥイーノ モジュールに来てください。インターネット上のさまざま
な指⽰はこの規則を無視します。これは、モジュールがこの点でより堅牢であることを⽰唆しています。

6.19。ブルートゥース 125

下側のプリントが⽰唆するよりも。それでも、3.3ボルトの制限内にとどまることは確かに害はありません。

SoftwareSerial

ArduinoのマイクロコントローラーのハードウェアUARTへのアクセスがありません ftドゥイーノ Arduinoの世界では、通常、
SoftwareSerialライブラリを使⽤して回避できます42。彼らの助けを借りて、マイクロコントローラーの他のピンも限られた範
囲でUARTタスクを引き受けることができます。でftドゥイーノ マイクロコントローラの2つの接続のみが外部から直接アクセ
スできます。これらは、IのSCLおよびSDA信号です。2のCポート ftドゥイーノ。残念ながら、これら2つの信号は
SoftwareSerialを介して使⽤することはできません。したがって、SoftwareSerialはftドゥイーノ Arduinosで通常⾏われている
ように、Bluetoothモジュールとの通信には使⽤できません。

私。2C-UART SC16IS750

エレガントなオプションは、Iを分離するモジュールを使⽤することです2のCポート ftドゥイーノ Bluetoothモジュール
に必要なUARTプロトコル。

そのようなコンポーネントの1つがSC16IS750です。43 NXPによる。特に、シンプルなアダプタボードでCJMCU 750とい
う名前でオンラインで⼊⼿でき、Iに直接接続できます。2のCポート ftドゥイーノ BluetoothモジュールのUART信号と同
様に。このチップのもう1つの利点は、3.3ボルトの信号で動作するため、Bluetoothモジュールに危険を及ぼすことがな
いことです。⼀⽅、彼⾃⾝はIで5ボルトに耐性があります。2C側 ftドゥイーノ。

I2C / SPI
A0- / CS
A1-SI
NC-SO
SCL-SCK
SDA-VSS
/ IRQ
IO0

GND
リセット

処⽅箋
TX

CTS
RTS
IO7
IO6
IO5
IO4

IO1
IO2
VINSC16IS750 IO3

（a）接続スキーム （b）実装にははんだ付けが必要です

図6.62：CJMCU750-Iを介したBluetooth2C-UARTアダプター

図6.19.2は、I間の必要な接続を⽰しています。2のCポート ftドゥイーノ そして私。2CJMCU 750のC接続、および
CJMCU750とBluetoothモジュールのUART接続を確⽴する必要があります。

接続 A0-CS と A1-SI この例では、CJMCU750の⼀部が接地されています。したがって、SC16IS750はアドレスに反応し
ます0x4e 1⽇2Cバス。これは、次のスケッチ例で考慮されています。複数のSC16IS750を接続する場合ftドゥイーノ それ
に応じて接続することで接続できます A0-CS と A1-SI 別のアドレスを割り当てることができます。

簡単なスケッチ例を以下に⽰します。
のUSBポート間で両⽅向にブリッジ ftドゥイーノ PCへの接続とSC16IS750のBluetoothモジュールへのUART接続。PCか
ら（たとえば、シリアルモニターを使⽤して、セクション3.3.1を参照）に送信されるすべての⽂字ftドゥイーノ 送信元 f
tドゥイーノ Bluetoothモジュールに転送されます。その逆も同様です。Bluetoothモジュールと直接通信し、Bluetooth
経由でシリアルモニターからデータを送信できます。次に、Bluetooth経由で受信したデータがシリアルモニターに直接
表⽰されます。

ファイル。例 。Ftduino 。ブルートゥース 。CJMCU_750 。橋 。彼

42SoftwareSerialライブラリ： https://www.arduino.cc/en/Reference/SoftwareSerial
43SC16IS750データシート： https://www.nxp.com/docs/en/data-sheet/SC16IS740_750_760.pdf

101

101

101
101

101

https://www.arduino.cc/en/Reference/SoftwareSerial
https://www.nxp.com/docs/en/data-sheet/SC16IS740_750_760.pdf

126 第6章実験

に簡単に接続 C1

すでに述べたように、マイクロコントローラのUART ftドゥイーノ すでに内部で使⽤されています。schertechnik超⾳波
センサー（セクション1.2.6を参照）もUARTを使⽤しているため、UARTはftドゥイーノ カウンター⼊⼒ C1 アクセス可能
になりました。の保護回路ftドゥイーノ BluetoothモジュールのTXD接続がカウンター⼊⼒に直接接続されるように、着
信信号への影響が少ない C1 の ftドゥイーノ マイクロコントローラのUARTを接続し、その恩恵を受けることができま
す。

リセット

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

O4

O6

101

101

101 101
101

I²C

+ 9V + 9V

（a）スキーム （b）最も単純な実装

図6.63：受信専⽤：Bluetoothオン C1

モジュールに必要な5ボルトの供給電圧はIから⾒ることができます。2C接続をタップオフする必要があります。これを⾏
う最も簡単な⽅法は、図に⽰すように、いわゆるソケット間ジャンパー線を使⽤することです。これらのケーブルは、
のピンに直接接続できます。ftドゥイーノ-私2CコネクタもBluetoothモジュールのピンに接続します。

重要：この⽅法で接続されたBluetoothモジュールは、 ftドゥイーノ 受け取るが、彼に送るだけです。たとえば、PCへの
Bluetooth接続の場合、これはデータをPCからPCに転送できることを意味します。 ftドゥイーノ 送信できますが、からは送信
できません ftドゥイーノ PCに。ただし、多くの単純なリモートコントロールアプリケーションでは、これで⼗分であり、たと
えば、ArduinoBlue（セクション6.19.3を参照）を完全に使⽤できます。

PCからのデータの受信は、たとえば、Sketchを使⽤して⾏うことができます。
シリアルモニターで観察できます。

ファイル。例 。Ftduino 。ブルートゥース 。
CounterPort 。橋

この形式でのUARTの使⽤は、 Ftduino私が⾔ったように、UARTは超⾳波センサーにも使⽤されているため、ライブラ
リ。スケッチ例

したがって、の修正バージョンが含まれています Ftduinoサポートしていないライブラリ
超⾳波センサー⽤。このバージョンは、Bluetooth接続に接続せずに使⽤できますC1 利⽤される。

ファイル。例 。Ftduino 。ブルートゥース 。
CounterPort 。ArduinoBlue

への双⽅向接続 C1＆C2

からデータを送信するために使⽤されるマイクロコントローラのUART伝送ライン ftドゥイーノ Bluetoothモジュールの
場合、メーター接続には内部的に必要です C2 使⽤済み。この接続は、通常の構成になっていますftドゥイーノ ⼊⼒と適
切な保護回路を備えています。

この接続を出⼒として使⽤する場合、これらの保護回路により、出⼒デジタル信号の電圧が低レベル（0）として2.5ボ
ルト、⾼レベル（1）として5ボルトになります。BluetoothモジュールのRXD⼊⼒は、低信号の場合は0.8ボルト未満、
⾼信号の場合は2〜3.3ボルトの電圧を想定しています。

6.19。ブルートゥース 127

単純なシリコン発光ダイオードは、それに応じて電圧を下げる最も簡単な⽅法の1つです。図6.64に⽰すように、それら
の電圧降下を使⽤して、信号レベルを約2ボルト下げることができます。結果として⽣じる0.5ボルトと3ボルトは、
Bluetoothモジュールによって確実に検出され、3.3ボルト未満のBluetoothモジュールの許容範囲内にあります。発光ダ
イオードを接続するときは、極性を守る必要があります。発光ダイオード（アノード）の⻑い⽅の接続線は、C2-の接続
ftドゥイーノ。発光ダイオードと抵抗器が正しく接続されている場合、発光ダイオードは⾮常に弱く点灯するはずです。
100kの抵抗は、3ボルトから0.5ボルトに変更するときに電圧が⼗分に速く降下することを保証します。

リセット

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

O4

O6

101

101

101 101 101

I²C

+ 9V + 9V

（a）スキーム （b）簡単な実装

図6.64：送受信：Bluetoothオン C1＆C2

この回路により、双⽅向動作が可能であり、通信は両⽅からです。 ftドゥイーノ PCに、PCから反対⽅向に ftドゥイーノ
可能。

スケッチ
いわゆるATコマンドを使⽤したBluetoothモジュールの構成。図6.65は、ブリッジスケッチを使⽤したコマンドに対する
HM-10の反応を⽰しています。AT + NAME、AT + VERSION と AT +ヘルプ。 HC-05とHC-06は、コマンドに対する反応が
少し異なる場合があります。または、最初にボタンを押してコマンドモードにする必要があります。これらのコマンド
は、最初は単純な操作では意味がありません。これらは、双⽅向でのコミュニケーションの成功例にすぎません。

ファイル。例 。Ftduino 。ブルートゥース 。CounterPort 。橋 とりわけ、

への双⽅向接続 C1、C2 および電圧レギュレータ

残りの⽋点は、Iの使⽤です。2Bluetoothモジュールの電源⽤のC接続。⼀⽅では、これは接続を機械的にブロックし、I
を接続するために使⽤できなくなります2Cセンサーが使⽤できます。⼀⽅、の内部電源ftドゥイーノ 不必要に負担。

したがって、図6.66は、単純な7805電圧レギュレータが9ボルトの ftドゥイーノ を有効にします。このソリューションの
唯⼀の⽋点は、ftドゥイーノ 現在、実際には9ボルトを供給する必要があります。私の使⽤のために2Cコネクタは ftドゥ
イーノ USB経由で⼗分です。

図6.67は、必要な個々の部品と、それらをどのように使⽤できるかを詳細に⽰しています。 ftドゥイーノ 接続する必要があります。必要な
個々の部品は、例えばReicheltにあります44 利⽤可能。リンクリストにはHC-05Bluetoothモジュールも含まれており、必要に応じてHM-10
（残念ながらReicheltからは⼊⼿できません）に置き換えることができます。

44ReicheltコンポーネントリストftDuinoBluetooth HC05：https://www.reichelt.de/my/1733294

https://www.reichelt.de/my/1733294

128 第6章実験

図6.65：HM-10を使⽤したATコマンド

リセット

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

O4

O6

101

101

101 101 101

I²C

+ 9V + 9V

7805

（a）スキーム （b）簡単な実装

図6.66：求婚者I。2C接続：Bluetoothから9V、 C1＆C2

まとめ

これを⾏うにはいくつかの⽅法があります ftドゥイーノ Bluetoothモジュールで拡張可能。これらのソリューションの主な⻑所
と短所は次のとおりです。

SoftwareSerial この⼈気のある亜種は ftドゥイーノ 使⽤できません。

私。2C-UART SC16IS750 私。2C-UARTは最も⾼価なソリューションであり、はんだ付けが必要です。このソリューションは電気的なものです
最もクリーンで技術的にエレガントです。

6.19。ブルートゥース 129

（a）必要な部品 （b）アセンブリ

図6.67：9V電源とデータ接続

経由の接続 C1 ただ C1 使⽤すると、最も単純な構造が可能になります。ただし、このソリューションではデータ受信のみが可能です。
キャッチは可能ですが、送信はできません。

経由の接続 C1＆C2 の追加使⽤ C2 セットアップには少し余分な労⼒が必要です
しかし、双⽅向通信。

経由の接続 C1、C2 および電圧レギュレータ この解決策はもう少し⾯倒です。このために、私は2のCポート
ftドゥイーノ 他の使⽤は無料です。

最初の試みは、唯⼀の接続を介して最も簡単です C1 可能。純粋なリモートコントロールアプリケーションはすでに可能
です。の追加使⽤C2 Bluetooth通信のすべての可能性を開きます。Iを使⽤します。2C-UARTまたは9ボルト電源はオプ
ションであり、経験とニーズに応じて実⾏できます。

Bluetoothをschertechnik超⾳波センサーと⼀緒に使⽤する必要があります ftドゥイーノ 使⽤される、の使⽤ C1 オフとそれは
私でなければなりません。2C-UARTを使⽤できます。

6.19.3PCまたはスマートフォンでの使⽤

Bluetoothオン ftドゥイーノ PCまたはスマートフォンで適切なソフトウェアの形で適切なリモートステーションを使⽤する必要があります。

Windows上のHC-05

説明したように、HC-05はWindowsPCでの使⽤に最適です。電圧が供給され、⾚⾊発光ダイオードが激しく点滅すると
（1秒間に約5回）、PCからの接続を受け⼊れる準備が整います。

PCでは、右下のツールバーにあるBluetoothアイコンを使⽤して、HC-05を新しいデバイスとして統合します。結合中にセキュ
リティピンが要求されます。ここに⽰されているすべてのモジュールについて、これは元の作品です1234。

ペアリングが成功すると、図6.68に⽰すように、HC-05がWindowsの[デバイスとプリンタ]ウィンドウに表⽰されます。
次に、実際の通信はCOMポートを介して⾏われます。COMポートは次のように確認できます。この場合、HC-05モ
ジュールはCOM6 統合されており、たとえば、シリアルモニターを使⽤してArduinoIDEからアドレス指定できます。

注：Bluetooth COMポートは、Bluetoothを介したデータ交換専⽤に使⽤されます。たとえば、新しいスケッチをに追加
することはできませんftドゥイーノ Bluetooth経由で再⽣します。

130 第6章実験

（a）デバイスおよびプリンターのHC-05 （b）HC-05の特性 （c）COMポートのプロパティ

図6.68：WindowsでのBluetoothCOMポートの決定

Arduino IDEに加えて、Tera-Termなどの他のいわゆるターミナルプログラムが適しています45 COMポートを介した通信
⽤。Arduino IDEは⼀度に1つのシリアルモニターウィンドウしか開くことができないため、テストデータが必要な場合
は、2番⽬のターミナルプログラムを使⽤する必要があります。ftドゥイーノ-USBCOMポートとBluetoothCOMポートを
交換したい。

Windowsで使⽤するためのサンプルスケッチは次のとおりです。
と

ファイル 。 例 。 Ftduino
。 CJMCU_750 。 橋。

。ブルートゥース 。CounterPort 。
橋 ファイル。例 。Ftduino 。ブルートゥース

スマートフォンのHM-10

主要なモバイルオペレーティングシステムのアプリストアでは、HM-10モジュールにアクセスしたり、Androidの場合はHC-05またはHC-06に
アクセスしたりするためのさまざまなアプリを提供しています。

無料および広告なしのArduinoBlueアプリはHM-10で際⽴っています46 群衆の中から。

図6.69に⽰すように、ArduinoBlueインターフェースはクリアに保たれ、モデルのジョイスティック制御と調整可能なボ
タンとスライダーを使⽤した制御の両⽅を可能にします。

ArduinoBlueはAndroidとIOSで利⽤できます。

ArduinoBlueで使⽤するサンプルスケッチは次のとおりです。
と

これは、のカスタマイズされたバージョンです ftduino-ライブラリとモーターがどのように動作するかの例を⽰しています M1-の接続 ftドゥ
イーノ ArduinoBlueのジョイスティックで制御できます。

ファイル 。 例 。 Ftduino
ブルートゥース 。 CJMCU_750 。

。ブルートゥース

。前者は再び含まれています
。CounterPort 。

ArduinoBlue ファイル。例 。Ftduino 。 ArduinoBlue

45テラターム： http://ttssh2.osdn.jp
46ArduinoBlue： https://sites.google.com/stonybrook.edu/arduinoble/

http://ttssh2.osdn.jp
https://sites.google.com/stonybrook.edu/arduinoble/

6.19。ブルートゥース 131

（a）設定 （b）コマンド （c）ジョイスティック

図6.69：AndroidでのArduinoBlue

第7章

モデル

の第6章からの実験中に ftドゥイーノコントローラが焦点であり、使⽤された外部コンポーネントはごくわずかでした。
この章では、より複雑なモデルについて説明します。theftドゥイーノ ここで従属的な役割を果たします。

すべてのモデルは現在の建設キットからのものであるか、モデルに密接に基づいているため、対応するキットとのレプ
リカが可能です。

7.1⾃動化ロボット：ハイベイ倉庫

ハイベイウェアハウスモデルは、AutomationRobotsキットに含まれています。TXコントローラーの使⽤法は、元の⼿順で説明されて
います。追加のシートでは、TXTコントローラーについて説明しています。

図7.1：ハイラック ftドゥイーノ

スケッチ例
ボックス511933ROBOTX⾃動化ロボット。の接続ftドゥイーノ モデルのは、TXTの回路図に正確に対応しています。

ファイル。例 。Ftduino 。HighLevelRack 建物からハイベイ倉庫モデルを制御します

PCのシリアルモニターから操作します1。

1ハイラックビデオ https://www.youtube.com/watch?v=Sjgv9RnBAbg

https://www.youtube.com/watch?v=Sjgv9RnBAbg

7.2。ElectroPneumatic：ピンボール 133

重要： コマンド⼊⼒が機能するためには、⾏の端がシリアルモニターで開く必要があります
セクション3.3.1で説明されているように設定されています。

改⾏ また
改⾏（CR）

図7.2：ハイラックとのシリアル通信

7.2電空：ピンボール

の⼊⼒ ftドゥイーノ スイッチモードのSchertechnikフォトトランジスタとも互換性があります。次に、点灯しているト
ランジスタは真理値を真に、消灯しているトランジスタは真の値を提供します。

図7.3：フリッパーオン ftドゥイーノ-ベース

電空セットからのピンボールマシンのスケッチ例は以下にあります
。彼は、光バリアのスイッチ⼊⼒としてフォトトランジスタを使⽤しています。ボールによって中断されたもの

次に、ライトバリアは値falseを返します。

ファイル。例 。Ftduino 。
ピンボール

もしも（！ ftduino。input_get（（Ftduino ：：：I4））{
もしも（（ミリス （）- Loose_timer > 1000）{

//..。
}
Loose_timer = ミリス （）;

}

タイマーが実⾏されます。この場合、たとえば、イベント後の最も早い1秒（1000ミリ秒）で別のイベントが認識される
ようになります。

このスケッチは、OLEDディスプレイを使⽤して、残りのゲームボールとスコアを表⽰します2。以来ftドゥイーノ それでも出⼒
が空いている場合は、代わりにランプまたは発光ダイオードを使⽤できます。

2ピンボールビデオ https://www.youtube.com/watch?v=-zmuOhcHRbY

https://www.youtube.com/watch?v=-zmuOhcHRbY

134 第7章モデル

7.3 ROBOTICS TXT Explorer：ラインフォロワー

モバイルラインフォロワーは、ROBOTICS TXT Explorerセットのモデルに基づいており、このセットのIRレーンセンサーを使⽤しま
す。

図7.4：上のラインフォロワー ftドゥイーノ-ベース

適切なスケッチ例を以下に⽰します
黒い線をたどるためにラインセンサーを継続的にオフにします3。

ファイル。例 。Ftduino 。LineSensor ⾒つけられる。このスケッチは評価します

ラインセンサーは、⻩⾊と⻘⾊のケーブルで任意の2つの⼊⼒に接続されています I1 それまで I8 接続されています。さ
らに、電⼒は⾚と緑のケーブルを介して供給されますftドゥイーノ。

リセット

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

O4

O6

I²C

+ 9V + 9V

図7.5：ラインフォロアの配線図

この場合、トラックセンサーは⼊⼒に接続されています I1 と I2 接続されています。センサーは、⽩い領域が検出されたときに
ほぼ最⼤の電圧（約9ボルト）を供給し、黒い線が検出されたときにわずか数ミリボルトを供給します。

//両⽅の⼊⼒を電圧測定に設定します ftduino。input_set_mode（（
Ftduino ：：：I1、 ftduino。input_set_mode（（Ftduino ：：：I2、Ftduino ：：： 電圧）;

Ftduino ：：： 電圧）;

//両⽅の電圧を読み取ります
uint16_t left_value = ftduino。input_get（（Ftduino ：：：I1）; uint16_t
right_value = ftduino。input_get（（Ftduino ：：：I2）;

// 1ボルト（1000mV）未満の電圧は、「ラインが検出された」ことを意味します

3ラインフォロワービデオ https://www.youtube.com/watch?v=JQ8TLt5MC9k

https://www.youtube.com/watch?v=JQ8TLt5MC9k

7.4。井⽥の信号 135

もしも（（（ left_value <1000）&&（right_value <1000））{
//両⽅のセンサーがラインを認識しました//..。

}

7.4アイダの信号機

古典的なモデルは、信号機または歩⾏者⽤ライトです。このモデルは、⾞⽤に3つ、歩⾏者⽤に2つのランプを備えた信
号機を⽰しています。

O1 O4
リセット

3 I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

1 O2 O5
2 O4

O6I1

O3
I²C

+ 9V + 9V

（a）配線図

（b）モデル

図7.6：アイダの信号

適切なスケッチ例を以下に⽰します
ステートマシンの形で信号機に⾔及します。ライトシーケンスは、8つのステップの通常のプロセスに対応します。⾞は
緑、歩⾏者は⾚、歩⾏者の緑のフェーズを経て、最終的に⾞が再び運転できるようになります。

ファイル。例 。FtduinoSimple 。PedestrianLight ⾒つけられる。彼は実装します-

136 第7章モデル

状態0 状態1 状態2 状態3 状態4 状態5 状態6 状態7

I1キー 5秒 2秒 2秒 15秒 2秒 2秒

5秒

図7.7：信号機の状態

7.4.1ステートマシン

ソフトウェアでの信号機制御の単純で明⽩な実装は、信号機の状態の経過を直接追跡するプログラムで構成されます。
プログラムシーケンスは、ユーザーがキーが押されるのを待つか、時間が経過すると停⽌し、対応するイベントが発⽣
すると続⾏します。これは、信号機の最初の2つの状態の例として以下に⽰されています。

空所 ループ（）{
//キーが押されるのを待ちます
その間（！ ftduino。input_get（（ボタン））{};

//信号が点灯し、⾞は緑、歩⾏者は⾚ cars_green （）;

pedestrians_red （）;
遅れ（（CARS_GREEN_PHASE）;

//⾞が⻩⾊くなる cars_yellow
（）;
遅れ（（YELLOW_PHASE）;

//..。
}

このプログラムは短くて理解しやすいです。これは実際には良いことですが、⼤きな⽋点が1つあります。イベントを待
機している間、プログラムシーケンス全体が停⽌し、他のことを並⾏して実⾏できなくなります。

the PedestrianLightたとえば、Sketchは、の組み込みLEDも使⽤する必要があります。 ftドゥイーノ 閃光。これは、実
際の信号機の状態に関係なく、中断することなく発⽣するはずです。

解決策はステートマシンです。
//ループ関数が何度も呼び出されます 空所 ループ（）{

//次のライトチェンジイベントの時間 static unsigned long next_event = 0;
// Ameplの現在のステータス 静的⽂字 州 = 0;

//内部発光ダイオードは1秒に1回点滅する必要があります static unsigned long
flash_timer = 0; もしも（（ミリス （）> flash_timer + 10）

digitalWrite（（LED_BUILTIN 、 低い）; もしも
（（ミリス （）> flash_timer + 1000）{

digitalWrite（（LED_BUILTIN 、 ⾼い）;
flash_timer = ミリス （）;

}

//状態0（信号がオフ）の歩⾏者が//ボタンを押したかどうかをテストします

もしも（（（州 == 0）&&（ftduino。input_get（（ボタン））））

7.4。井⽥の信号 137

州 = 1; //はい->状態1に変更

もしも（（州 > 0）{

//設定時間が経過したかどうかをテストします もしも（（ミリス （）>
next_event）{

スイッチ（（州）{

//信号が状態1に変わります：⾞は緑、歩⾏者は⾚ 場合

//
cars_green （）;
pedestrians_red （）;
//次のイベントの時間を設定します next_event = ミリス （）
+ CARS_GREEN_PHASE; //次のイベントの状態を設定します

州 ++; //「state = state +1」の短い表記 壊す;

1：{
ランプをつける

}

//信号が状態2に変わります：⾞は⻩⾊、歩⾏者は⾚です 場合 2：{

cars_yellow （）;
next_event = ミリス （）+ YELLOW_PHASE; 州 ++;

壊す;
}

//信号が状態3に変わります：⾞は⾚、歩⾏者は⾚ 場合

//
壊す;

3：{
。。。

}

//..。
}

}
}

}

このリストはもっと複雑です。ただし、どの時点でもアクティブなメンテナンスが⾏われないという⼤きな利点があり
ます。代わりに、プログラムは実⾏を継続します。個々の信号機フェーズを引き続き実⾏できるようにするために、2つ
の変数がメモリとして作成されます（next_event と 州）。 ここでは、信号機のステータスと、このステータスを維持す
る期間が永続的に記録されます。

このようにして、LEDを完全に独⽴して点滅させ、必要に応じて他の制御タスクを実⾏することができます。

⼤きな出費は、 ftドゥイーノ たとえば、PCやスマートフォンで⼀般的なように、複数のプログラム部分（いわゆるプロ
セスまたはスレッド）を同時に提供できる独⾃のオペレーティングシステムはありません。

シンプルなものの⼤きなメリット ftドゥイーノアプローチは、その正確な予測可能性にあります。オペレーティングシステムがバック
グラウンドで予期せずビジー状態になり、プログラムの実⾏が停⽌した場合、PCまたはスマートフォンから誰もが知っています。た
とえば、モーターが特定の位置に到達したときにモーターが⼗分に速く停⽌しない場合、ユーザーインターフェイスでのみ煩わしいこ
とが、開ループおよび閉ループの制御タスクで簡単に問題になる可能性があります。このため、より単純なものができますftドゥイー
ノ Linuxオペレーティングシステムによって駆動されるTXTコントローラーやRaspberryPiなどよりも、多くのことに迅速かつ予測どお
りに反応します。存在しないオペレーティングシステムのもう1つのプラスの効果は、システムの⾼速起動です。Aftドゥイーノ 電源を
⼊れた直後に完全に機能し、デバイスがタスクを実⾏する前にオペレーティングシステムが起動するのを待つ必要はありません。

商業環境においてさえ、このような単純なシステムが常に必要とされる主な理由は、システムの起動が速く、動作が簡
単に予測できることです。 ftドゥイーノ ハードウェアの価格が下がる複雑なオペレーティングシステムベースのソ
リューションを使⽤することも、ますます単純化するデバイスで可能です。

138 第7章モデル

7.5クラシック2Dプロッタ

Schertechnikプロッタ305714位 1985年からは、schertechnikの最初のコンピューティングモデルの1つでした。X軸とY
軸の動きは、6ボルトのステッピングモーターによって実現され、ペンは磁⽯によって上下されました。当時のコン
ピューティングインターフェースの8つの出⼒を介して制御されていたため、ペンをモーターの1つと巧みに組み合わせ
て、合計8つの出⼒を処理しました。

図7.8：ピンはschertechnikサーボによって持ち上げられます

ここで紹介するモデルは同じ⼨法で、⾮常によく似た基本的な仕組みを使⽤しています。2つのステッピングモーターも
使⽤されますが、9ボルトでもプロッター動作に⼗分な電⼒を発⽣する12ボルトバージョンです。ステッピングモーター
は、セクション6.4で説明されているように制御および接続されます。

このモデルでは、Schertechnikサーボによってペンが上下します。ここでは、セクション6.5のアプローチを使⽤できま
す。この場合、私は。2Cサーボシールド5 使⽤済み。それはもう少し扱いに くいですが、本当の私を許可します。2C操
作とOLEDでそうですftドゥイーノ 互換性。

下の⼀致するスケッチ
改善の可能性。USB / COMインターフェースで標準のHP-GLコマンドを受け⼊れます6⽇ したがって、多くのPCプログラ
ムから直接アドレス指定できます。

ファイル。例 。FtduinoSimple 。プロッタ ⾮常にシンプルに保たれ、優れた機能を備えています

4位 schertechnikデータベース： https://ft-datenbank.de/tickets?fulltext=30571
5Thingiverseのサーボシールド： https://www.thingiverse.com/thing:3316758
6⽇ウィキペディアのHP-GL： https://de.wikipedia.org/wiki/Hewlett-Packard_Graphics_Language

https://ft-datenbank.de/tickets?fulltext=30571
https://www.thingiverse.com/thing:3316758
https://de.wikipedia.org/wiki/Hewlett-Packard_Graphics_Language

7.5。クラシック2Dプロッタ 139

図7.9：設計は1985年のプロッタに⼤きく基づいています

第8章

コミュニティプロジェクト

the ftドゥイーノ 本当のコミュニティプロジェクトです。これは、schertechnikコミュニティからのアイデアに基づいて
いるため、既存のコミュニティプロジェクトにうまく統合されます。商⽤製品は多くの場合、前任者と競合しており、
顧客には何よりも新しいものを提供する必要がありますが、コミュニティプロジェクトでは、古い技術的に競合するシ
ステムをより簡単に統合できます。

the ftドゥイーノ セクション6.13.5で説明されているように、Iを介してschertechnikTXTコントローラーで使⽤できます。2ペアC。い
わゆるコミュニティファームウェアはTXTに付属しています1 使⽤するため。接続するための対応するプログラム ftドゥイーノ 私あた
り。2Cもそこにあります2。

8.1 ftduino_direct： ftドゥイーノ-USB経由でTXTおよびTX-Piに接続

USBを介したPC、TXT、またはRaspberry-Piへの接続は、よりシンプルで堅牢です。コミュニティは、この⽬的のため
にスケッチと適切なPythonライブラリを提供します3。

スケッチの助けを借りて、 ftドゥイーノ その接続は、USB経由で接続された上位レベルのデバイスで利⽤できます。
Pythonライブラリを上位デバイスで使⽤して、の⼊⼒と出⼒にアクセスできます。ftドゥイーノ アクセスするために。

図8.1： ftドゥイーノ RaspberryPiのUSB経由

1 schertechnikTXTコミュニティファームウェア http://cfw.ftcommunity.de/ftcommunity-TXT
2ftDuino I2CFWの場合はC https://github.com/harbaum/cfw-apps/tree/master/packages/ftDuinoI2C
3ftduino_direct-スケッチ https://github.com/PeterDHabermehl/ftduino_direct

http://cfw.ftcommunity.de/ftcommunity-TXT
https://github.com/harbaum/cfw-apps/tree/master/packages/ftDuinoI2C
https://github.com/PeterDHabermehl/ftduino_direct

8.2。 ftDuinIO： ftドゥイーノ-TXTおよびTX-Piの制御アプリ 141

このライブラリの助けを借りて、コミュニティファームウェア⽤の既存のPythonプログラムは、 ftドゥイーノ 拡⼤。こ
れは、Raspberry Piなどのデバイスで特に興味深いものです。これらのデバイスには、せん断技術センサーやアクチュ
エーターへの固有のインターフェイスがないためです。

図8.2： startIDE TX-Piでアクセス可能 ftドゥイーノ

のようなプログラム startIDE4位 と ブリックリー5 の助けを借りてすることができます ftduino_direct に ftドゥイーノ の
Schertechnik互換接続にアクセスして使⽤する ftドゥイーノ 使⽤します。

8.2 ftDuinIO： ftドゥイーノ-TXTおよびTX-Piの制御アプリ

のインストール ftduino_direct-上のスケッチ ftドゥイーノ Arduino IDEを介して通常どおり実⾏できますが、従来のPC
が必要です。PCから完全に独⽴するために、ftDuinIO-コミュニティファームウェア⽤に設計されたアプリ。

図8.3： ftDuinIO-アプリ

このアプリは、schertechnik-TXTだけでなく、TX-Piに構成されたRaspberry-Piでも操作でき、スケッチを実⾏できま
す。 ftドゥイーノ ロードするだけでなく、 ftduino_direct-機能をテストします。

4位startIDE： https://forum.ftcommunity.de/viewtopic.php?f=33&t=4297
5レンガ： https://cfw.ftcommunity.de/ftcommunity-TXT/de/programming/brickly/

https://forum.ftcommunity.de/viewtopic.php?f=33&t=4297
https://cfw.ftcommunity.de/ftcommunity-TXT/de/programming/brickly/

142 第8章コミュニティプロジェクト

8.3 レンガのプラグイン： グラッシュ ftドゥイーノ-Bricklyでのプログラミング

ブリックリー6⽇ GoogleのBlocklyにあるものです7⽇ ベースのグラフィックプログラミング環境。

図8.4：Bricklyプログラミングインターフェイス

BricklyはschertechnikTXTコントローラー⽤に作成されており、⼊⼒と出⼒を使⽤するためのすべてが備わっていま
す。 Brickly⾃体を実⾏するには、強⼒なコントローラーが必要です。これは、schertechnikTXTコントローラーまたは
RaspberryPiの場合があります。操作とプログラミングは、WLAN経由で接続されたスマートフォンまたはPCを使⽤して
Webブラウザで実⾏されます。

the ftドゥイーノ それ⾃体は、Bricklyを実⾏するのに⼗分なほど強⼒ではありません。また、必要なWiFi接続を提供します ftドゥイー
ノ ではない。

代わりに、Bricklyは1つをschertechnik-TXTコントローラーまたはRaspberry-Pi（TX-Pi）に接続できます。 ftドゥイーノ 向かう。
Bricklyは、このためにセクション8.1で説明されているものを使⽤しますftduino_direct-繋がり。

Theftドゥイーノ-Bricklyのプラグイン8⽇ブラウザインターフェイスで直接既存のBricklyインストールにインストールできま
す。

図8.5：Bricklyプラグインのインストール

その後、 ftドゥイーノ⼊⼒と出⼒は、Bricklyプログラムで直接使⽤できます。Raspberry Piはschertechnikの世界を開
き、TXTコントローラーは20の追加⼊⼒と8つの出⼒で拡張できます。

Bricklyは、セクション6.18.4で説明されているliteバリアントにも存在します。これにより、ブラウザからUSB経由で接続され
たブラウザに直接アクセスできます。ftドゥイーノ 追加のTXTコントローラーやRaspberryPiは必要ありません。

6⽇レンガのような指⽰ https://github.com/EstherMi/ft-brickly-userguide/blob/master/de/brickly/index.md
7⽇Google-Blockly https://developers.google.com/blockly/
8⽇ブリックリーftドゥイーノ-プラグイン https://github.com/harbaum/brickly-plugins#ftduino-io ftduinoxml

https://github.com/EstherMi/ft-brickly-userguide/blob/master/de/brickly/index.md
https://developers.google.com/blockly/
https://github.com/harbaum/brickly-plugins#ftduino-io---ftduinoxml

8.4。 startIDE： TX-PiまたはTXTで直接プログラミング 143

図8.6：を制御するためのBricklyプログラム ftドゥイーノ

8.4 startIDE： TX-PiまたはTXTで直接プログラミング

schertechnik TXTおよび-TXコントローラーの通常のRoboProプログラミング環境では、プログラミングにWindowsPC
が必要です。より現代的なBrickly（セクション8.3を参照）でさえ、プログラム開発のために外部デバイスに依存してい
ます。

StartIDE9 ⼀⽅、schertechnikTXTコントローラーまたはRaspberryPiの⼩さなタッチスクリーンでも、デバイス上で直接
プログラムを作成できるように設計されています。

（a）メイン画⾯ （b）機能の選択 （c）IO構成

図8.7：StartIDEの表⾯

the startIDE TXTの独⾃の接続だけでなく、USBを介して外部に接続される⼀連のインターフェイス全体の接続もサポー
トします。 ftドゥイーノ。これを⾏うには、それ⾃体を利⽤しますstartIDE セクション8.1ですでに提⽰されているもの
ftduino_direct-繋がり。以来startIDE また、TX-PiまたはRaspberry-Piで実⾏され、Schertechnikモデルでの使⽤に必要
な接続を提供します。

TX-Pi（またはRaspberry-Pi）チーム、 ftドゥイーノ と startIDE これにより、SchertechnikモデルをPCやスマートフォンなし
でプログラムできます。

詳細な取扱説明書10 the startIDE 使⽤⽅法の詳細が含まれています ftドゥイーノ。

9startIDE-ホームページ： https://github.com/PeterDHabermehl/startIDE/
10startIDE-マニュアル： https://github.com/PeterDHabermehl/startIDE/blob/master/ddoc/Manual_160_de.pdf

https://github.com/PeterDHabermehl/startIDE/
https://github.com/PeterDHabermehl/startIDE/blob/master/ddoc/Manual_160_de.pdf

144 第8章コミュニティプロジェクト

8.5フィートエクステンダー：I。2C拡張⼦

ft-extenderはIのようなものです。2セクション6.13.6からのC-Expanderは、Iを許可するデバイスです。2のCバス ftドゥイーノ
拡張して、さまざまなデバイスを同時に接続および結合します。

図8.8：フィートエクステンダー

Iの機能について2C-Expanderに加えて、ft-Extenderは接続されたデバイスに追加の電源を提供します。ftエクステン
ダーの助けを借りてftドゥイーノ 接続されているセンサーは、Iとは異なります。2C-からではないエキスパンダー ftドゥ
イーノ ft-Extender⾃体によって供給されます。⼀⽅で、これはわずかに⾼い電流が利⽤可能であることを意味します。
しかし何よりも、5ボルトの隣にはftドゥイーノ 電源、3.3ボルトの電源もご利⽤いただけます。したがって、ft-
ExtenderはIよりも柔軟性があります。2Cエキスパンダー。

ftエクステンダーの詳細については、次のURLをご覧ください。 https://github.com/elektrofuzzis/ftExtender、具体的には
https://github.com/elektrofuzzis/ftExtender/blob/master/Handbuch_ft-Extender.pdf。

8.6 Arduino（S4A）のスクラッチ

傷11⽇ BlocklyおよびBricklyに匹敵するグラフィックプログラミング環境です（セクション6.18.4を参照）。

図8.9：S4Aのメイン画⾯

11⽇傷： https://scratch.mit.edu/

https://github.com/elektrofuzzis/ftExtender
https://github.com/elektrofuzzis/ftExtender/blob/master/Handbuch_ft-Extender.pdf
https://scratch.mit.edu/

8.6。Arduinoのスクラッチ（S4A） 145

Scratchは、純粋なシミュレーション環境として開発されました。実際のハードウェアとの相互作⽤は意図されていませんでした。Arduinoの
スクラッチ12⽇ Arduinosに対処するScratchimの機能を拡張します。この⽬的のために、Arduinoに特別なスケッチがインストールされていま
す。このように準備されたArduinoは、S4Aによって⾃動的に認識され、統合されます。

以来 ftドゥイーノ 特別な⼊⼒と出⼒があるため、S4Aスケッチで直接制御することはできません。これの代わりに
で⾒つけることができます ftドゥイーノ-互換性のあるスケッチを下にインストールします 。A

このスケッチを装備 ftドゥイーノ S4Aによって⾃動的に認識され、統合されます。
ファイル。例 。Ftduino 。S4AFirmware16

デジタル13

S4A出⼒
リセット

analog5
アナログ6
analog9
digital10
digital11
digital12

S4Aセンサー
Analog0

Analog1

I1

I2

I3

I4

I5

O1 O2

O3

O5

O7 O8

C1

O4

O6
モーター4

エンジン7

モーター8

Analog2

Analog3

Analog4

Analog5

Digital2

Digital3

I6

I7

I8

C2

C3

C4

I²C

+ 9V + 9V

図8.10： ftドゥイーノ-S4Aでの接続

S4Aは、⼊⼒と出⼒の名前を持つ通常のArduino名に密接に基づいているため、 ftドゥイーノ-通常の指定が使⽤されま
す。図8.10は、ftドゥイーノ S4Aにどのような名前で表⽰されますか。

8.6.1インストール

上のS4A ftドゥイーノ S4Aの通常のインストールが必要です。インストールはS4Aホームページの下にあります http://
s4a.cat/ 説明された。

そこで指定された元のスケッチの代わりに、スケッチは単に上にある必要
があります ftドゥイーノ 課⾦されます。

ファイル。例 。Ftduino 。S4AFirmware16 -

リセット

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

O4

O6

I²C

+ 9V + 9V

図8.11：ランプを点滅させる単純なS4Aの例

図8.11に、プログラム例と対応するケーブルを⽰します。アナログ⼊⼒の場合、ftドゥイーノ 0から0までの値の範囲 65
。535 kΩ Scratchが0〜1023の値で動作している間に測定できます。S4Aの1023の値はこれに対応します65。535 kΩ ま
たは上のオープンエントランス ftドゥイーノ。S4Aの値0は、に対応します。0 Ω または閉じた⼊り⼝。

12⽇S4A： http://s4a.cat/

http://s4a.cat/
http://s4a.cat/

146 第8章コミュニティプロジェクト

8.6.2S4Aでのピン割り当ての表現

S4AはArduinoで使⽤するように設計されているため、プログラムは最初に右上の領域にArduinoの割り当てを⽰しま
す。それはそれでの作業を容易にしますftドゥイーノ S4Aの下で、 ftドゥイーノ ⽰されています。

対応するいわゆるスプライトファイルは、 https://harbaum.github.io/ftduino/www/images/s4a_sprite.png 利⽤可能。
Arduino画像のディスプレイのすぐ下に、新しいスプライトを選択するためのアイコンがあります。

（a） ftドゥイーノ-S4Aのスプライト （b）新しいスプライトの選択

図8.12：新しいスプライトのインストール

このアイコンをクリックすると、次のペイントダイアログで新しいスプライトを描画できます。上記のファイルを使⽤するには、最初
に⾃分のPCにファイルをロードする必要があります。の中に
S3Aをインポートできます。新しいスプライト画像はで終わる必要があります

ペイントダイアログ。[OK]の[インポート]ボタンで確
認できます。

図8.13：の表⽰ ftドゥイーノ-S4Aのスプライト

の接続割り当て ftドゥイーノ S4Aの右上に現在のプロジェクトの永続的に表⽰されるようになりました。

8.7 マインクラフト と ftドゥイーノ：コンピュータゲームと現実の世界が出会う

教訓分野に端を発するScratchなどのグラフィックモジュラープログラムキットに加えて、⼀⾒予想外の⽅向から来るグ
ラフィックプログラミングシステムもあります。

https://harbaum.github.io/ftduino/www/images/s4a_sprite.png

8.7。 マインクラフト と ftドゥイーノ：コンピュータゲームと現実の世界が出会う 147

この⼈気のある例はMinecraftです。Redstoneと対応するコンポーネントを使⽤すると、このゲームは仮想Minecraftの
世界にケーブルを敷設し、内部のゲームアクチュエータとセンサー、およびロジック要素を接続する可能性を提供しま
す。

図8.14： ftドゥイーノ-MinecraftのMod

Minecraftmodの ftドゥイーノ 接続されたPCの接続でMinecraftの内部世界を接続するブロックでMinecraftを拡張します
ftドゥイーノ 接続します。

8.7.1のインストール ftドゥイーノ-モッド

いわゆる ftドゥイーノ-MinecraftのModはForge1.12.2に基づいています 13⽇ これらのMinecraftバージョンとForgeバージョンをインス
トールする必要があります。のインストールftドゥイーノ-Modは他のModと何ら変わりはありません。

the ftドゥイーノ-Mod⾃体は https://harbaum.github.io/ftduino/minecraft/ftduino-0.0.3.jar ダウンロードしました。
Windows、Linux、MacOSPCに適しています。通常の⼿順に従って、関連するMinecraft modディレクトリにコピーさ
れ、次にMinecraftが起動されたときに⾃動的にロードされます。

8.7.2の準備 ftドゥイーノ

the ftドゥイーノ と⼀緒に⾏かなければなりません IoServerスケッチを提供することができます。これはArduinoIDEの下にあります

⾒つけられる。この場合、通常のボードを使⽤する必要がありますftDuino 選択され、 いいえ ftDuino
（WebUSB）、 MinecraftはWebアプリケーションではないためです。

ファイル。例 。
WebUSB 。IoServer

IoServerSketchが適切に装備されているので ftドゥイーノ■内部OLEDディスプレイも使⽤するため、AdafruitGFXライブラリ
をインストールする必要があります。必要に応じて、ArduinoIDEのライブラリメニューから数回クリックするだけでこれを実
⾏できます。内部表⽰は絶対に必要というわけではなく、スケッチはすべての⼈に機能しますftドゥイーノ 表⽰なし。

13⽇Forge 1.12.2： http：// les.minecraftforge.net/maven/net/minecraftforge/forge/index_1.12.2.html

https://harbaum.github.io/ftduino/minecraft/ftduino-0.0.3.jar
http://files.minecraftforge.net/maven/net/minecraftforge/forge/index_1.12.2.html

148 第8章コミュニティプロジェクト

8.7.3の使⽤ ftドゥイーノ Minecraftで

だった ftドゥイーノ-Modが正常に統合されると、図8.15に⽰す追加のブロックが、レッドストーン領域のMinecraftのク
リエイティブモードで使⽤できるようになります。

現時点では、⼊⼒⽤の純粋なデジタルブロックがあります I1 それまで I8、 出⼝ O1 それまで O8 およびの内部発光ダイオード ftドゥ
イーノ 処分する。

（a）⼊⼝ I1-I8 （b）終了 O1-O8 （c）内部LED

図8.15： ftドゥイーノ-Minecraftのブロック

⼊⼒ブロック（の） レッドストーンを⼊り⼝の1つに接続します I1 それまで I8 の ftドゥイーノ 処分する。ブロックの前
⾯を右クリックすると、⼊⼒を選択できます。これは、8つのソケットの1つに差し込まれている緑⾊のプラグによって
象徴されています。その右側の⻩⾊の点滅は、選択した⼊⼒がアクティブになったことを⽰します。たとえば、ftドゥ
イーノ 接続されているスイッチが閉じています。図に⽰す⼊⼒I1 現在アクティブではありません。の同じ⼊⼒を持つ複
数の⼊⼒ブロックftドゥイーノ が関連付けられると、すべてのブロックが対応する⼊⼒の信号を同時に受信します ftドゥ
イーノ。

出⼒ブロック（アウト） Redstoneを出⼒の1つに接続します O1 それまで O8 の ftドゥイーノ ここ。この場合、それは⾚
いプラグで識別されます。図に⽰されているブロックは、アクティブなレッドストーンによって制御されています。し
たがって、これはアクティブであり、この場合は出⼒を制御しますO2 そしてそれを状態に切り替えます こんにちは 出
⼝の間に1つ O2 アース（-）接続ランプが点灯します。これは、稲妻の記号で⽰されます。⼀度に存在できるブロックは
1つだけですftドゥイーノ-出⼒が割り当てられます。そうしないと、⽭盾する信号が同じ出⼒に送信される可能性があり
ます。

LEDブロックは、の内部発光ダイオードを制御します ftドゥイーノ の上。このブロックは、制御の⽭盾を防ぐために、
Minecraftの世界に1回だけ存在できます。

たとえば、図8.14の例の世界では、単純な交互のフラッシャーが右奥に表⽰されています。出⼝のあるもののレッドス
トーントーチO2 関連する ftドゥイーノ-出⼒ブロックは、このブロックの前にある信号を無効にするインバーターを形成
します。信号はその前にあるレッドストーンリピーターにルーティングされます。これにより、信号がわずかに遅延
し、出⼒のあるリピーターに戻ります。O2 関連する ftドゥイーノ-出⼒ブロックを転送します。信号の継続的な遅延と否
定により、約1秒ごとに点滅します。別の出⼒ブロック、今回はO1 関連付けられているは、反転信号に接続されていま
す。出⼝へO1 と O2 したがって、接続されたランプは交互に点滅します。写真のさらに左側には、上の⼊り⼝がありま
すftドゥイーノ-⼊⼒の上にあるレッドストーンランプを含む、実装された⼊⼒ブロック I7 の ftドゥイーノ 向かう。

第9章

ライブラリ

のすべての接続 ftドゥイーノ Arduinoスケッチからの制御。ただし、さまざまな⼊⼒と出⼒を制御するためのすべての
コードをスケッチ⾃体に実装する必要があるため、この⼿順には多くの経験が必要であり、⽐較的複雑なArduinoスケッ
チになります。

図9.1： ftドゥイーノArduinoIDEのライブラリ

the ftドゥイーノ したがって、いわゆるライブラリを持ってきます。これらは、の⼊⼒と出⼒を制御するための既製のルーチン
を含むコードコレクションです。ftドゥイーノ含まれています。これにより、実際のArduinoスケッチがはるかに単純で短くな
り、何よりも、プログラマーはいくつかの使いやすいルーチンにアクセスするだけでよいため、ハードウェアの側⾯を完全に
理解する必要はありません。ftドゥイーノ-ハードウェア使⽤。ライブラリは、の⼀部として含まれていますftドゥイーノ
-ArduinoIDEへのインストールは⾃動的にインストールされます。これらのライブラリの更新は、Arduino IDEによって⾃動的
に検出され、更新のために提供されます。

それでも、もちろん直接アクセスは可能です。上級プログラマーは、すべてのライブラリをバイパスしてハードウェア
に直接アクセスできます。ライブラリのコードも無料で⼊⼿できます1ユーザー⾃⾝が必要に応じて拡張や改善を⾏える
ようにします。

利⽤可能な2つのライブラリがあります ftドゥイーノ 向かう。theFtduinoSimple-⾮常にシンプルに保たれ、⾮常に基本
的な関数のセットのみを提供するライブラリ Ftduino⾮常に複雑で、信号の⼊出⼒に幅広い機能を提供するライブラリ。

9.0.1ポートの定義と定数

のさまざまなポートの場合 ftドゥイーノ 次の2つのライブラリでは同じ定数が使⽤されています。たとえば、8つの⼊⼒
は定数で表されますFtduino :: I1 それまで Ftduino :: I8 説明された。もしそれでも

1https://github.com/harbaum/ftduino/tree/master/ftduino/libraries

https://github.com/harbaum/ftduino/tree/master/ftduino/libraries

150 第9章ライブラリ

これらの定数の後ろに値0〜7を⾮表⽰にします。可能であれば、常に定数を使⽤する必要があります。定数の後ろに隠
されている値を変更する必要が⽣じた場合でも、対応するスキットは引き続き機能します。

プログラマーは、これらの定数が常に昇順で連続しているという事実に頼ることができます。たとえば、すべてのポー
トでカウントできます。

// ftDuinoのすべての⼊⼒をループします
にとって（（uint8_tポート=Ftduino ：：：I1; ポート <= Ftduino ：：：I8; ポート ++）{

/ *ポートは次々にすべてのポートI1からI8を参照します* / do_something（（ポート）;

}

同等のバージョンは次のとおりです。

にとって（（uint8_t i= 0; 私 <8; 私++）{
do_something（（Ftduino ：：：I1+私）;

}

9.1 FtduinoSimple

the FtduinoSimple-ライブラリは⾮常に単純なライブラリです。単純なデジタル値（オン/オフ）のクエリと出⼒のオン
とオフの切り替えのみが可能です。アナログの電圧と抵抗を読み込んだり、出⼒を可変値に切り替えたりすることはで
きません。

の利点 FtduinoSimple-ライブラリは次のとおりです。

シンプルさ ライブラリには、⾮常に使いやすい関数がいくつかあります。間違いはほとんどありません。

低メモリ要件 ライブラリは、フラッシュまたはRAMメモリをほとんど使⽤しません。 ftドゥイーノ。ほとんどすべてのメモリ
実際のスケッチに使⽤できます。

副作⽤はありません ライブラリは、ATmega32u4コントローラーの他の内部ハードウェアを使⽤せず、実装します
たとえば、独⾃の割り込みハンドラを管理しません。内部ハードウェア全体（タイマー、カウンター、割り込みな
ど）は、独⾃のスケッチに使⽤でき、ATmega32u4ハードウェアに直接アクセスするときに予期しない影響を考慮
する必要はありません。

に FtduinoSimple-ライブラリを使⽤するには、対応するインクルードラインをスケッチの先頭に挿⼊する必要がありま
す。

＃ 含む <FtduinoSimple.h>

9.1.1スケッチでの使⽤

the FtduinoSimple-ライブラリは、センサーとアクチュエーターの制御の多くの詳細をユーザーから隠し、⼊⼒と出⼒
を数⾏の簡単なコードでスケッチで使⽤できるようにします。

次の例は、を使⽤した出⼒の定期的な切り替えを⽰しています。 FtduinoSimple-としょうかん：
1
2
3
4位
5
6⽇
7⽇
8⽇
9

10
11⽇
12⽇
13⽇
14⽇

＃ 含む <FtduinoSimple.h>

空所 設定（）{
//初期化は必要ありません

}

空所 ループ（）{
//出⼒O1をオンにします ftduino。output_set
（（Ftduino ：：：O1 、 遅れ （1000）;

//出⼒O1をオフにします ftduino。output_set
（（Ftduino ：：：O1 、 遅れ （1000）;

Ftduino ：：：こんにちは）;

Ftduino ：：：LO）;

}

9.1。 FtduinoSimple 151

9⾏⽬と12⾏⽬で出⼒ O1 の ftドゥイーノ オンまたはオフに切り替えました。の最初のパラメータoutput_set（）- 関数
は、切り替えられる出⼒を指定します。これにより、出⼒をオンにするかオフにするかが決定されます。

注意： 出⼒を使⽤できるようにするために、 ftドゥイーノ もちろん9ボルトで供給することができます。

の⼊⼒ ftドゥイーノ で⾮常に使いやすいです FtduinoSimple-クエリライブラリ：
1
2
3
4位
5
6⽇
7⽇
8⽇
9

10
11⽇
12⽇
13⽇
14⽇
15⽇
16

＃ 含む <FtduinoSimple.h>

空所 設定（）{
//初期化は必要ありません

}

空所 ループ（）{
//⼊⼒I1を読み込みます
もしも（（ftduino。input_get（（Ftduino ：：：I1））

//出⼒O1をオンにします ftduino。output_set
（（Ftduino ：：：O1 、 それ以外 {{

//出⼒O1をオフにします ftduino。output_set
（（Ftduino ：：：O1 、

{{

Ftduino ：：：こんにちは）;

}

Ftduino ：：：LO）;
}

}

9⾏⽬では、aの状態が⼊⼒に送信されます I1 接続されたスイッチ。押されている（閉じている）か開いているかに応じ
て、出⼒は11⾏⽬または14⾏⽬に表⽰されます。O1 オンまたはオフ。

9.1.2 bool input_get（uint8_t ch）

この関数は、⼊⼒のステータスを読み取ります ch 1。許容値ch それは Ftduino :: I1 それまで Ftduino :: I8。 戻り値は 本
当、 ⼊⼒がアースに接続されている場合 false、 そうでもなければ。このようにして、たとえば、それぞれの⼊⼒とその
隣の対応するアース接続の間に接続されているボタンを簡単に照会できます。

⼊⼒の評価はバックグラウンドでは⾏われませんが、正確にその瞬間に⾏われます。 input_get（）-関数が呼び出され
ます。特に、直前の呼び出しとは異なるポートが要求された場合input_get（） これにより、数マイクロ秒の遅延が発⽣
します。 ftドゥイーノ-変更された⼊⼒への内部切り替えを実⾏する必要があります。

例

//⼊⼒I1のキーの状態を読み取ります もしも（（ftduino。
input_get（（Ftduino ：：：I1））{

/ * ...何かをする... * /
}

9.1.3 bool counter_get_state（uint8_t ch）

この機能は、その動作モードに対応しています input_get（）。 しかし、 counter_get_state（） カウンター⼊⼒に適
⽤されます。の値の範囲ch したがって、 Ftduino :: C1 それまで Ftduino :: C4。

戻り値は 本当、 ⼊⼒がアースに接続されている場合 false、 そうでもなければ。

例

//カウンタ⼊⼒C1のキーの状態を読み取ります もしも（（ftduino。
counter_get_state（（Ftduino ：：：C1））{

/ * ...何かをする... * /
}

https://www.onlinedoctranslator.com/ja/?utm_source=onlinedoctranslator&utm_medium=pdf&utm_campaign=attribution

152 第9章ライブラリ

9.1.4 void output_set（uint8_tポート、uint8_tモード）

機能付き output_set（） 出⼒を使⽤できます O1 それまで O8 制御されています。の値の範囲ポート したがって、 Ftduino ::
O1 それまで Ftduino :: O8。

パラメータ ファッション 出⼒がもたらされる状態を記述します。可能な値ファッション それは Ftduino ::オフ、 出⼒を
完全に接続解除する必要がある場合は、 Ftduino :: LO、 出⼒をグランドに切り替える場合、 Ftduino ::こんにちは、 出
⼒を9ボルトに切り替える場合。

例

//出⼒O1とアースの間でランプを点灯させます ftduino。output_set（（Ftduino
：：：O1 、 Ftduino ：：：こんにちは）;

注：出⼒は、次の場合にのみ使⽤できます。 ftドゥイーノ 9ボルト電源に接続されています（セクション1.2.5を参照）。

9.1.5 void motor_set（uint8_tポート、uint8_tモード）

関数 motor_set（） モーター出⼒を操作します M1 それまで M4。 モーター出⼒は、2つの出⼒を組み合わせて形成され
ます（M1 = O1 と O2、M2 = O3 と O4、。。。）。の値 ポート したがって、 Ftduino :: M1 それまで Ftduino :: M4。

パラメータ ファッション モーター出⼒がどの状態を想定するかを⽰します。可能な値ファッション それは Ftduino ::オ
フ、 エンジンを停⽌する必要がある場合は、 Ftduino ::左、 モーターを左に回す必要がある場合は、 Ftduino ::右、
モーターが右に曲がる必要がある場合 Ftduino ::ブレーキ、 モーターにブレーキをかけるとき。

の違い Ftduino ::オフ と Ftduino ::ブレーキ エンジンがまだ回転しているということです Ftduino ::ブレーキ 2つの接続
を相互接続することにより、モーターはでアクティブにブレーキがかけられます Ftduino ::オフ オフになっているだけ
で、ゆっくりと期限切れになります。

例

//出⼒M1のモーターを反時計回りに動かします ftduino。motor_set
（（Ftduino ：：：M1、 Ftduino ：：：左）;

注：出⼒は、次の場合にのみ使⽤できます。 ftドゥイーノ 9ボルト電源に接続されています（セクション1.2.5を参照）。

9.1.6スケッチの例

を使⽤するためのコード例 FtduinoSimple-ライブラリはArduinoIDEのメニューにあります
。

ファイル。
例 。FtduinoSimple

9.2 Ftduino

the Ftduinoライブラリは、のすべての機能をカプセル化します ftドゥイーノ-ユーザーが特定の技術的な実装について⼼
配することなく、すべての⼊⼒と出⼒に簡単にアクセスできるようにするハードウェア。

the Ftduinoライブラリ⾃体には、フラッシュメモリ、RAMメモリ、およびバックグラウンドコンピューティング能⼒が
必要であるため、アプリケーションスケッチですべてのリソースを完全に利⽤できるわけではありません。さらに、以
下の機能説明で説明するように、タイマーや割り込みなどのATmega32u4の内部リソースを利⽤します。

に Ftduinoライブラリを使⽤するには、対応するインクルードラインをスケッチの先頭に挿⼊する必要があります。
＃ 含む <Ftduino.h>

9.2。 Ftduino 153

加えて 初期化 （） -関数を呼び出すことができます。これは理にかなっている早い段階で起こります設定（）-関数。

//セットアップ関数は起動時に1回呼び出されます 空所 設定（）{

// Ftduinoライブラリを使⽤する準備をします ftduino。初期化（）;

}

9.2.1⼊⼒ I1 それまで I8

⼊り⼝ I1 それまで I8 ATmega32u4マイクロコントローラのアナログ⼊⼒に接続されています ftドゥイーノ 接続されてい
ます。これらのアナログ⼊⼒は、ftドゥイーノ-アナログ変換には⼀定の時間がかかるため、ライブラリはバックグラウ
ンドで永続的に評価されます。これにより、⼊⼒のクエリでの望ましくない遅延を回避できます。

the ftドゥイーノライブラリは、いわゆる ADC_vect-割り込み。アナログ-デジタル変換器（ADC）は、1秒あたり約8900
回の測定速度に設定されています。安定した2番⽬の測定値を取得するために、各⼊⼒が2回照会されるため、8つの⼊⼒
に対して合計16の測定値が必要になります。これにより、⼊⼒ごとに1秒あたり約560回の測定の変換率が得られ、バッ
クグラウンドで⾃動的に実⾏されます。したがって、読み取り時の測定値は最⼤で約2ミリ秒前であり、値は約2ミリ秒
ごとに更新されます。

the ftドゥイーノ 各⼊⼒でいわゆるプルアップ抵抗をアクティブにできるため、電圧測定を抵抗測定にすることができま
す。それはまたによってサポートされていますftドゥイーノ-ライブラリはバックグラウンドで管理され、スイッチオー
バーは測定前に⾃動的に⾏われます。これは、チャネルごとに2つの測定が⾏われる理由でもあります。これにより、ス
イッチオーバー後、2回⽬の測定前に信号が安定します。

9.2.2 void input_set_mode（uint8_t ch、uint8_tモード）

関数 input_set_mode（） ⼊⼒の測定モードを設定します ch。 の有効な値 ch から Ftduino :: I1 それまで Ftduino ::
I8。

値 ファッション することができます Ftduino ::抵抗、Ftduino ::電圧 また Ftduino :: SWITCH 悩ませる。関数input_get
（） その後、抵抗値（オーム）、電圧値（ミリボルト）、またはスイッチのスイッチングステータスを真理値として提
供します。

9.2.3 uint16_t input_get（uint8_t ch）

この関数は、⼊⼒の現在の測定値を読み取ります ch アウト。の有効な値ch から Ftduino :: I1 それまで Ftduino :: I8。

返される測定値は16ビット値です。電圧測定の場合、0〜100ボルトの電圧に対応する0〜10,000の値が返されます。抵
抗測定の場合、0〜65535オームの抵抗値が返されます。これにより、65キロオームを超えるすべての抵抗に対して値
65535も返されます。測定原理により、約10キロオームを超える値はますます不正確になります。スイッチを測定する場
合のみtrue また false ⼊⼒が100オーム未満（スイッチが閉じている）でグランドに接続されているかどうかに応じて、
返送されます。

この関数は通常、バックグラウンドで決定された最後の測定値をすぐに返します。⼊⼒の測定モードが事前に直接変更
されている場合、関数が有効な測定値を返すまでに最⼤2ミリ秒しかかかりません。この場合、関数はプログラムの実⾏
を⻑時間ブロックします。

例

// I1での抵抗を評価します
ftduino。input_set_mode（（Ftduino ：：：I1、 Ftduino ：：： 抵抗）; uint16_t抵
抗 = ftduino。input_get（（Ftduino ：：：I1）;

154 第9章ライブラリ

9.2.4出⼒ O1 それまで O8 と M1 それまで M4

出⼝ O1 それまで O8 従来の9ボルトアクチュエータを直接接続するための8つの独⽴した増幅出⼒です。
ランプ、バルブ、モーターなどのせん断技術。

タイプのドライバーブロック MC33879A2 制御されます。このモジュールには、8つの独⽴して制御可能なパワートランジスタが含まれ
ています。2つのトランジスタはそれぞれ、出⼒をグランドに切り替えるか、9ボルトに切り替えるか、完全に未接続のままにすること
ができます。これにより、各出⼒の3つの可能な状態が発⽣しますLO（アースに切り替え）、 こんにちは （9ボルトに切り替え）また
は オフ （接続されていません）。

それぞれ2つの出⼝ ⽜ エンジン出⼒につながる可能性があります Mx 組み合わせる。出⼒O1 と O2 エンジン出⼒になります
M1、O3 と O4 エンジン出⼒ M2 などなど。組み合わされたエンジン出⼒は、4つの可能な状態を持つことができますオフ、
左、右 と ブレーキ 受け⼊れる。州では左 と 正しい 接続されたモーターは、接続の極性に応じて反時計回りまたは時計回りに
回転します。状態でオフ 両⽅の出⼒が接続されておらず、モーターは接続されていないかのように動作し、たとえば⽐較的簡
単に回転させることができます。状態でブレーキ たとえば、両⽅の出⼒がアースに接続されており、接続されているモーター
にブレーキがかかっているため、回転が困難です。

モータードライバーは、ATmega32u4のいわゆるSPIインターフェースを介して接続されます。両⽅のモータードライ
バーは直列に接続されており、すべてのSPIデータ転送でデータが提供されます。出⼒での信号変化、特に出⼒でアナロ
グ信号を⽣成するためのPWM信号⽣成（セクション6.3を参照）では、バックグラウンドでSPIバス上で継続的に通信す
る必要があります。これを⾏うには、Ftduinoバックグラウンドで永続的に実⾏され、モータードライバーのステータス
を永続的に更新する、いわゆるSPI割り込みハンドラーをライブラリ化します。

注：出⼒は、次の場合にのみ使⽤できます。 ftドゥイーノ 9ボルトの電圧源に接続されています。

9.2.5 void output_set（uint8_tポート、uint8_tモード、uint8_t pwm）

この関数は、単⼀の出⼒を切り替えます。の有効な値ポート の範囲内にあります Ftduino :: O1 それまで Ftduino :: O8。

パラメータ ファッション 出⼒を切り替える出⼒モードを⽰します。許容値ファッション それは Ftduino ::オフ（出⼒がオフに
なっています）、 Ftduino :: LO（出⼒がグランドに切り替えられます）および Ftduino :: HI（出⼒は9ボルトに切り替えられま
す）。

the pwm-パラメータは、アナログ信号を⽣成するためのパルス幅変調の値を指定します。値は0から可能です（
Ftduino :: OFF） 最⼤64（Ftduino :: MAX また Ftduino :: ON） ⼗分です。ここで、0は⼗分を表し、64はオンを表しま
す。出⼒に接続されたランプは0で点灯せず、64で明るく点灯します。中間値は対応する中間値を⽣成し、ランプは1で
点灯します。pwm-低輝度でのみ32の値。可能であれば定数を使⽤する必要がありますFtduino ::オフ、Ftduino ::オン と
Ftduino :: MAX これらはPWM値の範囲が変更された場合に使⽤されるため、たとえば、以降のバージョンで使⽤できま
す。 Ftduinoライブラリは簡単にカスタマイズできます。中間値は定数から導出できます（例：Ftduino :: MAX/2）。

例

//出⼒O2を50％に切り替えます
ftduino。output_set（（Ftduino ：：：O2 、 Ftduino ：：：こんにちは、 Ftduino ：：：MAX / 2）;

9.2.6 void motor_set（uint8_tポート、uint8_tモード、uint8_t pwm）

関数 motor_set（） 結合されたモーター出⼒を切り替えます。の有効な値ポート の範囲内にあります Ftduino :: M1 そ
れまで Ftduino :: M4。

パラメータ ファッション モーター出⼒を切り替える出⼒モードを⽰します。許容値ファッション それは Ftduino ::オフ（出⼒がオフ
になっています）、 Ftduino :: LEFT（モーターが左に曲がる）、 Ftduino ::右（モーターは時計回りに回転します）そして Ftduino ::
ブレーキ（モーターは、両⽅の個別の出⼒をグランドに切り替えることによってアクティブにブレーキがかけられます）。

the pwm-パラメータは、アナログ信号を⽣成するためのパルス幅変調の値を指定します。値は0から可能です（Ftduino ::
OFF） 最⼤64（Ftduino :: MAX また Ftduino :: ON） ⼗分です。ここで、0は⼗分を表し、64はオンを表します。家畜

2下のデータシート http://cache.freescale.com/ les / analog / doc / data_sheet / MC33879.pdf。

http://cache.freescale.com/files/analog/doc/data_sheet/MC33879.pdf

9.2。 Ftduino 155

出⼒接続モーターはモードで回転します Ftduino ::左 と Ftduino ::右 0ではなく、64で最⼤速度。中間値は対応する中間
値を⽣成し、モーターは1つで回転しますpwm-低速の場合のみ32の値（モーター速度とPWM値の関係の詳細について
は、セクション6.3を参照してください）。可能であれば定数を使⽤する必要がありますFtduino ::オフ、Ftduino ::オン
と Ftduino :: MAX これらはPWM値の範囲が変更された場合に使⽤されるため、たとえば、以降のバージョンで使⽤でき
ます。 Ftduinoライブラリは簡単にカスタマイズできます。中間値は定数から導出できます（例：Ftduino :: MAX/2）。
モードで Ftduino ::ブレーキ を決定します pwm-モーターのブレーキの強さの値。モードでFtduino ::オフ 持っている
pwm-値は関係ありません。

例

// M3のモーターを1/3の速度で左に回します ftduino。motor_set（（Ftduino ：：：M3、
Ftduino ：：：左 、 Ftduino ：：：MAX / 3）;

9.2.7 void motor_counter（uint8_tポート、uint8_tモード、uint8_t pwm、uint16_tカウン
ター）

この関数はエンコーダモーターを制御するために使⽤され、最初の3つのパラメーターはと同じです。 motor_set（）-
関数。これらのパラメータの意味は同じです。

追加の4番⽬のパラメーターは、エンコーダーモーターが実⾏するパルス数を指定します。ステップは、対応するカウンター⼊
⼒、つまりカウンター⼊⼒で測定されますC1 エンジン出⼒⽤ M1、C2 にとって M2 などなど。指定されたインパルスが経過す
ると、モーターが停⽌します（を参照）。void motor_counter_set_brake（））。

インパルスのカウントとモーターの停⽌は、スケッチのその後の実⾏とは関係なく、バックグラウンドで⾏われます。モー
ター1回転あたりに検出されるパルス数は、モーターの種類によって異なります。TXTディスカバリーセットからモーターをお
届けします631/3 TXコントローラー⽤に最初に販売されたセットからモーターによって供給されるモーター軸の1回転あたりの
パルス 75 回転あたりのパルス。

9.2.8 bool motor_counter_active（uint8_tポート）

関数 motor_counter_active（） スルーのパルスカウントかどうかを返します ポート 指定されたモーター出⼒がアクティブで
す。の有効な値ポート の範囲内にあります Ftduino :: M1 それまで Ftduino :: M4。

アクティブとは、対応するモーターが呼び出しによってアクティブ化されることを意味します motor_counter（） が開始されており、パルス
カウンタはまだ有効期限が切れていません。この機能は、特に、パルスカウントが停⽌し、モーターが停⽌するのを待つために使⽤できます。

例

// M4でTXTエンコーダモーターを3回転始動します ftduino。motor_counter（（Ftduino
：：：M4、 Ftduino ：：：左 、 Ftduino ：：：MAX 、 //モーターが停⽌するまで待ちます

その間（（ftduino。motor_counter_active（（Ftduino ：：：M4））;
//エンジンが停⽌しました

190）;

9.2.9 void motor_counter_set_brake（uint8_t port、bool on）

この機能は、出⼒でのモーターのブレーキ動作を決定します ポート、 彼が機能を通過しているとき motor_counter（） が開始されま
す。

パラメータの場合 の上 真に（true） が設定されている場合、時間が経過した後、モーターはアクティブにブレーキをかけられます。彼は真実ではあり
ませんか （false）、 モーターはオフになっているだけで、ブレーキをかけずに惰性で停⽌します。ライブラリを初期化した後のデフォルト設定はtrue
です。つまり、アクティブブレーキがアクティブになっています。

どちらの場合も、エンジンは引き続き実⾏されます。ブレーキがかかると、TXTディスカバリーセットのエンコーダー
モーターは、約5インパルス（約1/10 ⾰命または28.5°）。 ブレーキがかかっていない場合、同じモーターが約90パルス
（約 11/2 ⾰命）。

156 第9章ライブラリ

エンコーダが停⽌した後もカウンタは実⾏を継続するため、オーバーランはプログラムで測定することもできます。

例

//出⼒M4のブレーキをオフにします
ftduino。motor_counter_set_brake（（Ftduino ：：：M4、 false）;
// M4でTXTエンコーダモーターを3回転始動します ftduino。motor_counter（（Ftduino
：：：M4、 Ftduino ：：：左 、 Ftduino ：：：MAX 、 //モーターが停⽌するまで待ちます

その間（（ftduino。motor_counter_active（（Ftduino ：：：M4））;
//モーターが動作する時間を与えるためにもう少し待ちます 遅れ （500）;

//カウンタの読み取り値を出⼒します
シリアル。println（（ftduino。counter_get（（Ftduino ：：：C4））;

190）;

9.2.10カウンター⼊⼒ C1 それまで C4

アナログ⼊⼒とは対照的に、カウンタ⼊⼒は純粋にデジタルで機能します。それらは、それぞれの⼊⼒がグランドに接
続されているかどうかを区別するだけです。これは通常、カウンタ⼊⼒とそれに対応するアース接続の間に接続された
テスター、またはエンコーダ出⼒がカウンタ⼊⼒に接続されているエンコーダモーターを使⽤して⾏われます。カウン
タ⼊⼒には内部プルアップ抵抗があります。それは彼らが⽇付を記⼊されていることを意味します ftドゥイーノ 接続さ
れたボタンが押されていないなどの理由で信号がない場合は、⾼または⾼信号レベルとして認識されます。ボタンを閉
じると、⼊⼒がグランドに切り替わります。ftドゥイーノ 低として認識されます。

4つのカウンタ⼊⼒は、ATmega32u4の割り込み対応⼊⼒に直接接続されています。技術的には、毎秒数⼗万のカウント
パルスの範囲での反応が可能です。たとえば、キーストロークがカウントされる場合、避けられないバウンス（セク
ション6.12を参照）は誤った結果につながります。このため、Ftduinoバックグラウンドでライブラリを作成し、イベン
トの最⼩⻑を1ミリ秒に制限します。短いイベントはカウントされません。

システムの起動後、4つのカウンターすべてがゼロに設定され、⾮アクティブ化されます。⼊⼒でのイベントはカウンターを変更しま
せん。

さらに、カウンター⼊⼒により C1 セクション1.2.6に⽰すように、schertechnik ROBOTX超⾳波距離センサー1330009の
接続。

9.2.11 void counter_set_mode（uint8_t ch、uint8_tモード）

この関数は、カウンタ⼊⼒の動作モードを設定します。の有効な値ch から Ftduino :: C1 それまで Ftduino :: C4。

しますか ファッション-の価値 Ftduino :: C_EDGE_NONE 設定すると、信号の変化はカウントされず、カウンタは⾮アクティブになり
ます。これが開始状態です。

意思 ファッション の上 Ftduino :: C_EDGE_RISING 設定すると、⽴ち上がり信号がカウントされます。つまり、⼊⼒信号がグ
ランドからより⾼い電圧に変化します。これは、たとえば、接続されているボタンが離された（開いた）ときに発⽣します。

A ファッション-の値 Ftduino :: C_EDGE_FALLING ⽴ち下がり信号がカウントされます。つまり、⼊⼒信号が⾼電圧から
グランドに変化します。これは、たとえば、接続されたボタンが押された（閉じた）ときに発⽣します。

しますか ファッション-最後に、価値 Ftduino :: C_EDGE_ANY が設定されている場合、両⽅の信号変更⽅向により、カウンタがインク
リメントされます。次に、たとえば、テスターを押すことと離すことの両⽅がカウントされます。

9.2.12 uint16_t counter_get（uint8_t ch）

この関数は、現在のカウンターステータスを返します。の有効な値ch の範囲内にあります Ftduino :: C1 と Ftduino ::
C4。

9.2。 Ftduino 157

返される最⼤値は65535です。この値を超えると、カウンターは0に戻ります。

9.2.13 void counter_clear（uint8_t ch）

機能の助けを借りて counter_clear（） カウンタの読み取り値はゼロに設定できます。の有効な値ch の範囲内にありま
す Ftduino :: C1 と Ftduino :: C4。

例

//⼊⼒C1での⽴ち上がり（低から⾼）パルスを1秒間カウントします ftduino。counter_set_mode（（Ftduino
：：：C1 、 Ftduino ：：： C_EDGE_RISING）; ftduino。counter_clear（（Ftduino ：：：C1）; 遅れ
（1000）;

uint16_tインパルス = ftduino。counter_get（（Ftduino ：：：C1）;

9.2.14 bool counter_get_state（uint8_t ch）

カウンタ⼊⼒の状態は、機能で直接確認することもできます。 counter_get_state（） 照会されます。の値ch の範囲内である
必要があります Ftduino :: C1 それまで Ftduino :: C4 横たわる。

この関数はtrueを返します（true） ⼊⼒がグランドに接続されていてfalseの場合は戻る（false） それが開いているとき。

この機能にはフィルタリングがないため、たとえば、キーのバウンスは抑制されません。このようにして、⾮常に⾼い
周波数のデジタル信号を記録することができます。

9.2.15 void Ultrasonic_enable（bool ena）

カウンタ⼊⼒時 C1 あるいは、Schertechnik ROBO TX超⾳波距離センサー1330009は、セクション1.2.6に⽰すように操
作できます。関数超⾳波有効化（） パラメータが次の場合にセンサーのサポートをアクティブにします エナ 真に（
true） が設定され、falseに設定されると⾮アクティブ化されます（false） が設定されています。

超⾳波センサーのサポートがアクティブになっている場合、⼊⼒のカウント機能 C1 ⾃動的に⾮アクティブ化されます。

超⾳波センサーが作動すると、バックグラウンドで1秒に約2回継続的に評価されます。したがって、現在の測定値は最
⼤500ミリ秒前のものです。

9.2.16 int16_t超⾳波_get（）

関数 超⾳波取得（） カウンタ⼊⼒の測定値を供給します C1 センチメートル単位の接続距離センサー。起動後にセン
サーが有効な測定値を受信して いない場合は、距離として-1が返されます。これは、センサーが接続されていない場合
にも発⽣します。

センサー⾃体は0〜1023センチメートルの範囲で動作します。

例

//⼊⼒C1で距離センサーを照会します ftduino。超⾳波有
効化（（true）;
遅れ （1000）; //最初の測定に1秒与えます int16_t距離 = ftduino。超⾳波_get

（）;

158 第9章ライブラリ

9.3コマンドの概要

コマンドの概要 FtduinoSimple

指図 説明
bool input_get（uint8_t ch）bool
counter_get_state（uint8_t ch）
void output_set（uint8_tポート、uint8_tモード）void
motor_set（uint8_tポート、uint8_tモード）

デジタル⼊⼒での読み取り I1-I8 カウンタ⼊
⼒状態の読み込み C1-C4 単⼀の出⼒を切り
替える O1-O8 モーター出⼒の切り替え M1-
M4

コマンドの概要 Ftduino

指図 説明
void input_set_mode（uint8_t ch、uint8_t mode）
uint16_t input_get（uint8_t ch）
void output_set（uint8_t port、uint8_t mode、uint8_t pwm）
void motor_set（uint8_t port、uint8_t mode、uint8_t pwm）void
motor_counter（uint8_t port、uint8_t mode、

uint8_t pwm、uint16_tカウンター）bool
motor_counter_active（uint8_tポート）
void motor_counter_set_brake（uint8_t port、bool on）
void counter_set_mode（uint8_t ch、uint8_t mode）bool
counter_get_state（uint8_t ch）
void超⾳波有効化（bool ena）int16_t
超⾳波_get（）

⼊⼒モードの設定 I1-I8 ⼊⼒の読み
取り I1-I8 出⼒の切り替え O1-O8
モーター出⼒の切り替え M1-M4 エ
ンコーダモーターの切り替え M1-
M4

エンコーダモーターカウンタの評価 C1-C4
エンコーダモーターブレーキの設定 M1-M4
カウンターモードの設定 C1-C4 カウンタ⼊
⼒状態の読み込み C1-C4 超⾳波センサーの
アクティブ化超⾳波センサーの読み取り

第10章

DIY

1つを持つことが可能です ftドゥイーノ ⼿動でビルドします。最初のプロトタイプはこの⽅法で作成されました。⼿動で
組み⽴てる場合は、機能グループに従って進め、機能を段階的に確認することをお勧めします。

⾃⼰構築の基礎は、付録Aに従った回路図に基づいて、付録BおよびCから⼯業的に製造された回路基板です。

10.1建設段階の電源

最初のステップでは、電源装置をセットアップします。コンデンサーダイオードで構成され
ていますD1 と D3 それまで D5 だけでなく、電圧レギュレータ U2 とバックアップ F1。 クラ
ンプ部1.2.4） LED2 関連する直列抵抗器と R35 マウントされています。⽕曜⽇ C1 すでにイ
ンストールすることもできます。

エーター C6 それまで C11 そのような
C14、 ngsversorungs-LED（eコイル

を参照） L1 コンデンサと同様に

J1 C7

PB1
SV2

U2
D1

R9 2
1

D2 10
R1
R2

D15
U3 C17 C15

C19
R7

Q1
R3
R4

C3 C2 C9

R33 C18 C16R8

R14 D16
U4R12 C23 C20

C4D8 IC1

R15
R16
R17

C10

R32
C24 C21

R29
R20

R18
R19 C22

C25
R37 T1

R21 C1

C13
L1R26 R38

R40R24

R27 ftDuino
（c）2017 by Till Harbaum

R42 R41

V1.1 6⽇
R30 1

2
R43
R45

R31 SV1

図10.1：電源のコンポーネント

9Vソケット 121 2つの襟の袖と同様に 9VIN + と 9VIN- USBはすでにロードされていま
す。

ライフル J1 今も

R2
5

R2
3

R2
2

R1
3

R1
1

R1
0

R6 R5
D1

0
D1

1
D9

D1
2

D1
3

D7
D1

4

JM
P1

R3
4

C1
1

R3
5

LE
D2

R2
8

LE
D1 12
1

C5
U1

D3

R4
4

D4
C1

2
C1

4
D5

C6
R3

9
R3

6
D6

C8

160 第10章⾃分でやる

10.1.1コンポーネントの極性

次のコンポーネントの極性に注意してください。 D1 と D3 それまで D5、C6 それまで C8 と C14 そのような LED2。

コンデンサの正の接続は、印刷されたバーまたはストリップで⽰されます。この接続は、組み⽴て計画でもバーと⾓度
の付いたコーナーでマークされています。

のさまざまなダイオード ftドゥイーノ アセンブリ印刷には異なる記号を使⽤してください。しかし、ここでも、ダイ
オード⾃体とアセンブリシンボルの両⽅のカソード側にバーがあります。

+

+ -
（a）タンタルコンデンサ （b）ダイオード （c）発光ダイオード

図10.2：回路図の記号、コンポーネントの極性、およびアセンブリの記号

発光ダイオード（LED）を使⽤すると、正しい極性を判別するのが少し難しくなります。三⾓形またはTは通常、LEDの
下側に印刷され、それぞれがカソードの⽅向を指しています。

発光ダイオードの極性は、ダイオードテストモードの簡単なマルチメータで確認できます。LEDのアノードを⾚いマルチ
メータケーブルに接触させ、カソードを黒いケーブルに接触させると、LEDが弱く点灯します。

電源のすべてのコンポーネントが装備されている場合、USBコネクタが接続されるとすぐに、またはカラースリーブま
たは9V丸型プラグを介して9ボルトが供給されるとすぐに緑⾊のLEDが点灯します。

少なくとも1つのケースでLEDが点灯しない場合は、マルチメータを使⽤して、電圧がまだ存在している場所と存在して
いない場所を簡単に追跡できます。最も可能性の⾼いエラーは、ダイオードまたはLEDの極性にあります。

10.1.2制御測定

Iのピン1と2の間に9ボルトの電源があります。2組み⽴てられていないコネクタのC接続 SV1 5ボルトの電圧（±0.4ボル
ト）を測定することができます。ここで測定された電圧が明らかに⾼すぎる場合は、いかなる状況でもマイクロコント
ローラーの組み⽴てを続⾏しないでください。

また、9ボルトの電源からの電源では、以前は組み⽴てられていなかった2つの低い9ボルトの出⼒でほぼ9ボルトを測定
する必要があります。ソースからの電圧損失は、ダイオードを介して発⽣しますD3 また。 D4 とダイオード D5 の上。

以前は装着されていなかったパッド14と7の間 IC1 純粋なUSB電源で5ボルトをわずかに下回る電圧を測定できる必要が
あります。そうでない場合、電圧レギュレータはU2 いわゆるボディダイオード（推奨されるMCP 1755Sにはこれがあり
ます）はなく、このダイオードの機能はスルーでなければなりません D6 外部から後付けすることができます。推奨され
るMCP1755Sを使⽤する場合、D6 交換せずに省略。

ダイオード D5 ボディダイオードを介しての出⼒ドライバへの電流を防ぎます ftドゥイーノ 得た。それ以外の場合、ft
ドゥイーノ また、USB 5ボルト電源から給電されるため、USBやボディダイオードが過負荷になる可能性があります。

陰
極 ア

ノ
ー

ド

陰
極 ア

ノ
ー

ド

10.2。第2建設段階のマイクロコントローラー 161

10.2第2建設段階 マイクロコントローラー

電圧供給は確保されており、何よりも、Iで9ボルトで動作していますか。2C接続は5ボルトで安定し、マイクロコント
ローラーと接続できます U1 つづく。

J1 C7

PB1
SV2

U2
D1

R9 2
1

D2 10
R1
R2

D15
U3 C17 C15

C19
R7

Q1
R3
R4

C3 C2 C9
C18 C16R8 R33

R14 D16
U4R12 C23 C20

D8 IC1 C4

R15
R16
R17

C10 C24 C21
R29 R32R20

R18
R19 C22

C25
R37 T1

R21 C1

C13
L1R26 R38

R40R24

R27 ftDuino
（c）2017 by Till Harbaum

R42 R41

V1.1 6⽇
R30 1

2
R43
R45

R31 SV1

図10.3：マイクロコントローラーのコンポーネント

マイクロコントローラの極性も逆にしないでください。この場合、正しい向きではんだ付けする必要があります。回路
基板とチップハウジングの両⽅に、1つのコーナーに丸いマーキングまたはくぼみがあります。

オリエンテーション。はU1 はんだ付けするこのマーキングは、マイクロコントローラのピン1を参照し、そのすぐ隣にある正しいOを決定します。
C5 と R29 組み⽴てられました。

この段階で組み⽴てられる他のコンポーネントには、リセットロジックダイオードが含
まれています D2 と抵抗 R9。 コンデンサ C4 と抵抗 R5 と R6 ⽔晶は16MHzのシステムク
ロックを完了します Q1 コンデンサー付き C2 と C3。

ボタンで構成 PB1、 USB回路を
変更するだけでなく。The

私。2Cコネクタ SV1 プルアップ抵抗付き R30 と R31 今もできます 在庫があります。

制御され、現在も発光ダイオード LED1 それらの直列抵抗器で R28 マイクロコントローラから直接マウン
トされます。発光ダイオードの極性を再度確認する必要があります。

いわゆる ISPコネクタ SV2 Bの1回限りの取り付けにのみ必要であり、標準のハウジング
にこのコネクタの切り⽋きがない場合は、必ずしも恒久的に取り付ける必要はありませ
ん。⾃由に利⽤できる印刷テンプレート1 恒久的にインストールされている SV2 利⽤さ
れる。

ootloaders（ハウジングに対応
する切り⽋きがあるため、セク
ション1.2.1を参照）

10.2.1マイクロコントローラの機能テスト

マイクロコントローラーは、USBブートローダーを備えたAtmel（またはMicrochip）製です2 したがって、PCからは、
マイクロコントローラはPCによってデバイスとして指定される必要があります ATm32U4DFU 重要なコンポーネントは
機能していると認識されています。そのWindowsにはこのデバイス⽤のドライバーがありません

配信されます。enに接続する場
合。その場合、帽⼦は無視でき
ます。

DFUブートローダーはArduinoIDEと互換性がなく、ArduinoIDEはコネクタを介してプ
ログラミングデバイスを提供します SV2 記録された（ge

独⾃のブートローダー。これは燃
える）。

Arduinoブートローダーを書き込むために、Arduino IDEは、USBaspなどの単純なバリアン
トの全範囲をサポートします3。USBaspは、USBおよび経由でPCに接続されます

nプログラミングデバイス。10
ピンリボンケーブルで⼗分です

1ケース印刷テンプレート https://github.com/harbaum/ftduino/tree/master/case
2DFUブートローダー、 http://www.atmel.com/Images/doc7618.pdf
3USBasp-Atmel AVRコントローラー⽤のUSBプログラマー、 http：// www。schl.de/usbasp/

R2
5

R2
3

R2
2

R1
3

R1
1

R1
0

R6

D1
0

D1
1

D9
D1

2
D1

3
D7

D1
4

R5

JM
P1

R3
4

C1
1

R3
5

LE
D2

R2
8

LE
D1 12
1

C5
U1

D3

R4
4

D4
C1

2
C1

4
D5

C6
R3

9
R3

6
D6

C8

https://github.com/harbaum/ftduino/tree/master/case
http://www.atmel.com/Images/doc7618.pdf
http://www.fischl.de/usbasp/

162 第10章⾃分でやる

図10.4：ArduinoIDEを介したブートローダーの書き込み

SV2 の ftドゥイーノ 接続されています。はSV2 装備されていない場合、対応するプラグがボードに緩く差し込まれ、す
べての接触が⾏われるように簡単に誤解される可能性があります。実際のフラッシュプロセスは数秒しかかからず、わ
ずかにずれている間、プラグを⾮常に⻑い間簡単に保持できます。

燃やした後、 ftドゥイーノ この名前でPCのオペレーティングシステムによって認識できます。Arduino IDEで対処し、ス
ケッチでプログラムする必要があります。以下のまばたきスケッチを最初のテストに使⽤できます

必要だから LED1 インストールされたばかりです。ファイル。例 。FtduinoSimple 。点滅

10.3第3建設段階の⼊り⼝

3番⽬の構築段階ははんだ付けが⾮常に簡単で、主に抵抗器で構成されます。 m使⽤される⼊⼒保護

J1 C7

PB1
SV2

U2
D1

R9 2
1

D2 10
R1
R2

D15
U3 C17 C15

C19
R7

Q1
R3
R4

C3 C2 C9

R33 C18 C16R8

R14 D16
U4R12 C23 C20

C4D8 IC1

R15
R16
R17

C10

R32
C24 C21

R29
R20

R18
R19 C22

C25
R37 T1

R21 C1

C13
L1R26 R38

R40R24

R27 ftDuino
（c）2017 by ハーバウムまで

R42 R41

V1.1 6⽇
R30 1

2
R43
R45

R31 SV1

図10.5：⼊⼒のコンポーネント

アナログ⼊⼒のコンポーネント I1 それまで I8 カウンター⼊⼒と同様に C1 それまで C4 誰 同時にマウントされます。

すなわち⼊⼒ I1 それまで I8 完全に組み⽴ては、左端の抵抗器から始まります。 IC1 それらの組み⽴て後d。

R2
5

R2
3

R2
2

R1
3

R1
1

R1
0

R6 R5
D1

0
D1

1
D9

D1
2

D1
3

D7
D1

4

JM
P1

R3
4

C1
1

R3
5

LE
D2

R2
8

LE
D1 12
1

C5
U1

D3

R4
4

D4
C1

2
C1

4
D5

C6
R3

9
R3

6
D6

C8

10.4。第4建設段階の出⼒ 163

2番⽬のステップは抵抗器です R36 それまで R46 トランジスタだけでなく T1 装備され、カウンター⼊⼒を完了します。
これで、超⾳波距離計のトリガー回路（セクション1.2.6を参照）が完成しました。

適切なテストプログラムを使⽤して、⼊⼒間の短絡も検出するために、各⼊⼒を個別にテストする必要があります。⼊
⼒が期待どおりに機能しない場合は、構築ステージ2のマイクロコントローラーもエラーの原因と⾒なすことができま
す。

10.4第4建設段階の成果

第4の最終建設段階では、出⼒を操作するために必要なコンポーネントがインストールされます。

J1 C7

PB1
SV2

U2
D1

R9 2
1

D2 10
R。
R。

1 D15
U3 C17 C152 C19

R7
Q1

R。
R。

3 C3 C2 C9
4位 C18 C16R8 R33

R14 D16
U4R12 C23 C20

C4D。8⽇ IC1

R15
R1
R1

6⽇ C10
7⽇ C24 C21

R29 R32R20

R1
R1

8⽇ C。22⽇9 R37 T1
R21 C1

C25C13
L1R26 R38

R40R24位

R27 ftDuino
（c）2017 by Till Harbaum

R42 R41

V1.1 6⽇
1 R43

R30 R452

R31 SV1

図10.6：出⼒のコンポーネント

パフォーマンスドライバー U3 と U4 少数の抵抗とコンデンサを介してドライバの接続
パッドにアクセスできるため、カラースリーブを簡単に取り付けることができないた
め、最初に組み⽴てる必要があります。

uははんだ付けしています。何よりも、r
はそれを難し くするはずです。The

10.4.15ボルトでの出⼒テスト

ドライバは9ボルト電源に接続されているため、はんだ付けエラーが発⽣した場合、9V間の短絡が
発⽣する可能性があります。

oltおよび5ボルトの先⾏信号

外部9V電源なし!!

USB その周り-
プラグリセット LED +-

9V =

I1

I2

I3

I4

I5

I6

I7

I8

O1 O2

O3

O5

O7 O8

C1

C2

C3

C4

O4

O6

反対の極性
接続されています
テスト⽤LED
出⼒M1から

I²C

+ 9V + 9V

図10.7：5Vと9Vの間のテストブリッジ

R2
5

R2
3

R2
2

R1
3

R1
1

R1
0

R6 R5
D1

0
D1

1
D9

D1
2

D1
3

D7
D1

4

JM
P1

R3
4

C1
1

R3
5

LE
D2

R2
8

LE
D1 12
1

C5
U1

D3

R4
4位

D4
C1

2
C1

4
D5

C6
R3

9
R3

6
D6

C8

164 第10章⾃分でやる

はんだ付けポイントを注意深くチェックすることに加えて、初期機能テストのために5ボルトの分岐から9ボルトの分岐
を供給することは理にかなっています。5ボルトを運ぶ信号間の短絡は⼀般に損傷を引き起こしませんが、より⾼い電圧
の5ボルトのコンポーネント間の短絡は⾮常に簡単に⼤きな損傷を引き起こす可能性があります。

注意：もちろん、外部の9ボルト電源を接続することはできません。接続しないと、 ftドゥイーノ すぐにダメージを受け
る！

ブリッジが設定されている場合、 ftドゥイーノ の内部5ボルトで ftドゥイーノ 出⼒と他の部分との間の短絡 ftドゥイーノ
危険性は低くなります。これで、発光ダイオードを使⽤して出⼒が正しく機能するかどうかをテストできます。内部の5
ボルト電源はそのような負荷を駆動するように設計されていないため、このテストではより⼤きな負荷（モーターまた
は電球）を使⽤しないでください。

すべての出⼒が5ボルトで正しく機能する場合にのみ、ブリッジを取り外して実際の9ボルト電源を接続できます。

10.4.2取締役会の歴史

the ftドゥイーノ 継続的に開発されています。したがって、回路基板もわずかに変化します。これまでのところ、次のバリアントが存在しま
す。

0.1 の試⽤版 ftドゥイーノ まだAtmega328に基づいており、⼊⼒と出⼒にも使⽤されていました
他のハードウェア。このバージョンから8つのプロトタイプが作成されました。

1.0 近直列 回路基板の最初のバージョンは、設計エラーのために10個のプロトタイプにのみ使⽤されました。

1.1 この章では最初のシリーズバージョンを⽰し、最初のシリーズデバイスはこのバージョンに基づいていました。このバー
ジョンは、オプションで⼊⼒にツェナーダイオードD10〜D17を装備できますが、これはシリーズでは使⽤されませんで
した。

1.2 2番⽬のシリーズバージョンでは、シリーズで使⽤されていないオプションのツェナーダイオードが不要です。代わりに、このバージョン
には、セクション1.2.7で説明されているように、内部OLEDディスプレイ⽤の追加の接点があります。

1.3 3番⽬のシリーズバージョンには、セクション6.13.9で説明されているように、オプションで内部サーボアダプタを
提供できます。このバージョンには、電源装置に追加のESD保護も含まれています。

バージョン1.0のすべてのボードバージョンは、論理的および電気的に互換性があり、ユーザーの観点からは同じように動作します。

付録A：回路図

図A.1：回路図 ftドゥイーノ バージョン1.1

付録B：ボードレイアウト

J1 C7

PB1
SV2

U2
D1

R9 2
1

D2 10
R1
R2

D15
U3 C17 C15

C19
R7

Q1
R3
R4

C3 C2 C9

R33 C18 C16R8

R14 D16
U4R12 C23 C20

D8 IC1 C4

R15
R16
R17

C10

R32
C24 C21

R29
R20

R18
R19 C22 R37 T1

R21 C1
C25C13

L1R26 R38
R40R24

R27 ftDuino
（c）2017 by Till Harbaum

R42 R41

V1.1 6⽇
R30 1

2
R43
R45

R31 SV1

図B.1：ボードのレイアウト ftドゥイーノ バージョン1.1

R2
5

R2
3

R2
2

R1
3

R1
1

R1
0

R6 R5
D1

0
D1

1
D9

D1
2

D1
3

D7
D1

4

JM
P1

R3
4

C1
1

R3
5

LE
D2

R2
8

LE
D1 12

1

C5
U1

D3

R4
4

D4
C1

2
C1

4
D5

C6
R3

9
R3

6
D6

C8

付録C：コンポーネントのレイアウト

J1 C7

PB1
SV2

U2
D1

R9 2
1

D2 10
R1
R2

D15
U3 C17 C15

C19
R7

Q1
R3
R4

C3 C2 C9

R33 C18 C16R8

R14 D16
U4R12 C23 C20

D8 IC1 C4

R15
R16
R17

C10

R32
C24 C21

R29
R20

R18
R19 C22 R37 T1

R21 C1
C25C13

L1R26 R38
R40R24

R27 ftDuino
（c）2017 by Till Harbaum

R42 R41

V1.1 6⽇
R30 1

2
R43
R45

R31 SV1

図C.1：機器計画 ftドゥイーノ バージョン1.1

R2
5

R2
3

R2
2

R1
3

R1
1

R1
0

R6 R5
D1

0
D1

1
D9

D1
2

D1
3

D7
D1

4

JM
P1

R3
4

C1
1

R3
5

LE
D2

R2
8

LE
D1 12

1

C5
U1

D3

R4
4

D4
C1

2
C1

4
D5

C6
R3

9
R3

6
D6

C8

付録D：⼨法

82mm
42.75

19.375
4位 4位

12⽇ 8⽇ 10
7⽇ 9

7.5 7⽇

33
16

45

7.5 10

3.5 2

図D.1：⼨法A ftドゥイーノ バージョン1.1

1.25
31

4位
1 2

2

1.5 4.5

3.5
+ 0.4

5
3.5

2 2 1

3
1.753.5 + 2

図D.2：⼨法B ftドゥイーノ バージョン1.1

3.
5

82
m

m

付録E：住宅

図E.1：下部ハウジングシェル

図E.2：上部ハウジングシェル

	Einleitung
	Das ftDuino-Konzept
	Das fischertechnik-Baukastensystem
	Das Arduino-System

	Der ftDuino-Controller
	Mikrocontroller
	USB-Anschluss
	Reset-Taster
	Interne LEDs
	Spannungsversorgung
	Anschlüsse
	Variante mit internem OLED-Display
	Hinweise für Arduino-erfahrene Nutzer

	Problemlösungen
	Die grüne Leuchtdiode im ftDuino leuchtet nicht
	Der ftDuino taucht am PC nicht als COM:-Port auf
	Der ftDuino funktioniert, aber die Ausgänge nicht
	Der ftDuino lässt sich nicht flashen
	Der ftDuino wird als Leonardo erkannt

	Installation
	Treiber
	Windows 10
	Windows 8.0 und Windows 8.1
	Windows 7 und Windows Vista
	Linux

	Arduino-IDE
	Arduino-IDE für Linux aus dem Ubuntu-Software-Store
	Installation mit dem Boardverwalter
	Updates

	Erste Schritte
	Der erste Sketch
	Ansteuerung von fischertechnik-Komponenten
	Der Sketch
	Eingänge

	Kommunikation mit dem PC
	Der serielle Monitor
	Sketchbeschreibung
	USB-Verbindungsaufbau

	Download des Blink-Sketches auf den ftDuino
	Die Funktionsweise des Sketches
	Die Funktionen setup() und loop()
	Anpassungen am Sketch
	Programmierung
	Textbasierte Programmierung
	Die Programmiersprache C++
	Grundlagen
	Kommentare
	Fehlermeldungen
	Funktionen
	Die Funktionen setup() und loop()
	Beispiel

	Hilfreiche Bibliotheksfunktionen
	pinMode(pin, mode)
	digitalWrite(pin, value)
	delay(ms)
	Serial.begin(speed)
	Serial.print(val) und Serial.println(val)
	ftduino.input_get(), ftduino.output_set() und ftduino.motor_set()

	Variablen
	Datentyp int

	Bedingungen
	if-Anweisung

	Schleifen
	while-Schleife
	for-Schleife

	Beispiele
	Einfache Ampel
	Schranke

	Die Warnung Wenig Arbeitsspeicher
	Auswirkungen
	Vorbeugende Maßnahmen

	Weiterführende Informationen

	ftDuino in der Schule
	Grafische Programmierung mit Scratch
	Grafische Programmierung mit Blockly/Brickly
	Brickly
	Brickly-Lite

	Spielerische Programmierung in Minecraft
	Textbasierte Programmierung mit der Arduino-IDE
	Die Arduino-Idee
	Arduino und ftDuino
	Der ftDuino als Einstiegs-Arduino

	Scratch-Versionen
	Scratch 1.4 for Arduino (S4A)
	Scratch 3.0
	Experimente
	Lampen-Zeitschaltung
	Sketch LampTimer

	Not-Aus
	Sketch EmergencyStop

	Pulsweitenmodulation
	Sketch Pwm

	Schrittmotoransteuerung
	Vollschrittsteuerung
	Halbschrittsteuerung

	Servomotoransteuerung
	Externe 6-Volt-Versorgung

	Die Eingänge des ftDuino
	Spannungsmessung
	Widerstandsmessung
	Ein Eingang als Ausgang

	Temperaturmessung
	Sketch Temperature

	Ausgänge an, aus oder nichts davon?
	Sketch OnOffTristate
	Leckströme

	Aktive Motorbremse
	USB-Tastatur
	Sketch USB/KeyboardMessage

	USB-GamePad
	Sketch USB/GamePad

	Entprellen
	Sketch Debounce

	Nutzung des I2C-Bus
	Sketch I2C/I2cScanner
	MPU-6050-Sensor
	OLED-Display
	VL53L0X LIDAR-Distanzsensor
	ftDuino als I2C-Client und Kopplung zweier ftDuinos
	ftDuino-I2C-Expander
	fischertechnik-Orientierungssensor
	fischertechnik-Umweltsensor
	Mini-I2C-Servo-Adapter

	WS2812B-Vollfarb-Leuchtdioden
	Sketch WS2812FX

	Musik aus dem ftDuino
	Sketch Music
	Sketch MusicPwm

	Der ftDuino als MIDI-Instrument
	Sketch MidiInstrument

	Der ftDuino am Android-Smartphone
	WebUSB: ftDuino via Webbrowser steuern
	Chrome-Browser
	WebUSB-Sketches
	Console

	Bluetooth
	Bluetooth-Varianten
	Anbindung an den ftDuino
	Nutzung am PC oder Smartphone

	Brickly-lite
	Scratch 3.0
	Modelle
	Automation Robots: Hochregallager
	ElectroPneumatic: Flipper
	ROBOTICS TXT Explorer: Linienfolger
	Idas Ampel
	Zustandsautomaten

	Klassischer 2D-Plotter

	Community-Projekte
	ftduino_direct: ftDuino-Anbindung per USB an TXT und TX-Pi
	ftDuinIO: ftDuino-Kontroll-App für TXT und TX-Pi
	Brickly-Plugin: Grafische ftDuino-Programmierung in Brickly
	startIDE: Programmierung direkt auf dem TX-Pi oder TXT
	ft-Extender: I2C-Erweiterung
	Scratch for Arduino (S4A)
	Installation
	Darstellung der Pin-Zuweisungen in S4A

	Minecraft und ftDuino: Computerspiel trifft reale Welt
	Installation der ftDuino-Mod
	Vorbereitung des ftDuino
	Verwendung des ftDuino in Minecraft

	Bibliotheken
	Port-Definitionen und Konstanten
	FtduinoSimple
	Verwendung im Sketch

	Ftduino
	Die Eingänge I1 bis I8
	void input_set_mode(uint8_t ch, uint8_t mode)
	uint16_t input_get(uint8_t ch)
	Die Ausgänge O1 bis O8 und M1 bis M4
	void output_set(uint8_t port, uint8_t mode, uint8_t pwm)
	void motor_set(uint8_t port, uint8_t mode, uint8_t pwm)
	void motor_counter(uint8_t port, uint8_t mode, uint8_t pwm, uint16_t counter)
	bool motor_counter_active(uint8_t port)
	void motor_counter_set_brake(uint8_t port, bool on)
	Die Zählereingänge C1 bis C4
	void counter_set_mode(uint8_t ch, uint8_t mode)
	uint16_t counter_get(uint8_t ch)
	void counter_clear(uint8_t ch)
	bool counter_get_state(uint8_t ch)
	void ultrasonic_enable(bool ena)
	int16_t ultrasonic_get()

	Befehlsübersicht

	bool input_get(uint8_t ch)
	bool counter_get_state(uint8_t ch)
	void output_set(uint8_t port, uint8_t mode)
	void motor_set(uint8_t port, uint8_t mode)
	Beispiel-Sketches
	Selbstbau
	Erste Baustufe „Spannungsversorgung“
	Bauteile-Polarität
	Kontrollmessungen

	Zweite Baustufe „Mikrocontroller“
	Funktionstest des Mikrocontrollers

	Dritte Baustufe „Eingänge“
	Vierte Baustufe „Ausgänge“
	Ausgangstests mit 5 Volt
	Platinenhistorie

	Schaltplan
	Platinenlayout
	Bestückungsplan
	Maße
	Gehäuse

